Introduction to Nonlinear Circuits -The Memristor

Dr. Bharathwaj "Bharath" Muthuswamy

About me.

Presentation Goal and Organization

The Discipline of Circuit Theory

Fundamental Circuit Variables

The Memristor

Conclusion

1

Introduction to Nonlinear Circuits - The Memristor

Dr. Bharathwaj "Bharath" Muthuswamy

Visiting Assistant Professor in Computer Science The College of New Jersey bharath.berkeley@gmail.com

October 25th 2017

About me...

- BS (2002), MS (2005), PhD (2009) in EECS from the University of California, Berkeley (advisors: Dr. Leon O. Chua, Dr. Pravin P. Varaiya)
 - For my MS, I worked on biomimetic bipedal robotics using Central Pattern Generators (I did not work on this after 2006)
 - For my PhD, my primary contribution was designing, implementing and rigorously proving the existence of chaos in the Muthuswamy-Chua system (circuit): an inductor-capacitor-memristor circuit in series (parallel)
- Areas of interest:
 - Nonlinear Dynamics (Circuits). Specifically: chaotic circuits and memristors
 - Embedded (FPGA) Systems and Education

Introduction to Nonlinear Circuits -The Memristor

Dr. Bharathwaj "Bharath" Muthuswamy

About me...

Presentation Goal and Organization

The Discipline of Circuit Theory

Fundamental Circuit Variables

The Memristor

Presentation Goal and Organization

- Goal: Discuss the memristor (4th fundamental (non)linear circuit element)
- Organization: We will utilize ideas from my upcoming book (co-authored with Dr. Banerjee from Universiti Putra, Malaysia): Introduction to Nonlinear Circuits and Networks
 - The Discipline of Circuit Theory
 - Fundamental Circuit Variables
 - The Memristor
 - Mathematical Formulation (Gedanken-Experiment)
 - Properties
 - Physical Memristors: Ideal Memristor (Josephson junction) and Non-ideal memristors (discharge tubes, pn-junctions)

Conclusion and Q/A

Introduction to Nonlinear Circuits -The Memristor

Dr. Bharathwaj "Bharath" Muthuswamy

About me.

Presentation Goal and Organization

The Discipline of Circuit Theory

Fundamental Circuit Variables

The Memristor

The Discipline of Circuit Theory

What is circuit theory?

A branch of electrical engineering that is concerned with the terminal behavior of circuit elements

Circuits vs. Networks

Introduction to Nonlinear Circuits -The Memristor

Dr. Bharathwaj "Bharath" Muthuswamy

About me.

Presentation Goal and Organization

The Discipline of Circuit Theory

Fundamental Circuit Variables

The Memristor

Linear vs. Nonlinear (SYSTEM)

Note: Quantum Mechanics is fundamentally "linear"

- So, how does nonlinear behavior (such as chaos) arise macroscopically?
- DEFINITION of a Linear SYSTEM
 - Principle of Superposition
- Question: Is the following system linear?

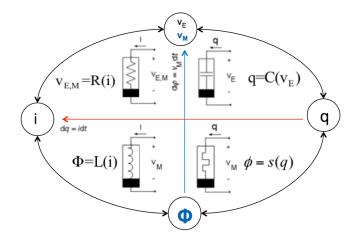
$$y = System(x) \stackrel{\triangle}{=} \alpha x + \beta \quad \forall \alpha, \beta \in \mathcal{R}; x, y \in [\mathcal{R} \to \mathcal{R}]$$

Answer: NO!

Introduction to Nonlinear Circuits -The Memristor

Dr. Bharathwaj "Bharath" Muthuswamy

About me.


Presentation Goal and Organization

The Discipline of Circuit Theory

Fundamental Circuit Variables

The Memristor

Fundamental Circuit Variables

Introduction to Nonlinear Circuits -The Memristor

Dr. Bharathwaj "Bharath" Muthuswamy

About me.

Presentation Goal and Organization

The Discipline of Circuit Theory

Fundamental Circuit Variables

The Memristor

Memristor: Mathematical Formulation (Gedanken-Experiment)

A memristor (menductor) defines a relationship between φ and q (q and φ):

$$\phi \stackrel{\triangle}{=} s(q) \tag{1}$$

► In terms of v − i:

$$v(t) = M(q(t))i(t)$$
(2)

Here, $M(q(t)) = M(\int_{-\infty}^{t} i(\tau) d\tau)$. M is the memristance function

- Note that a memristor is fundamentally nonlinear element (unlike the resistor, capacitor, inductor)
 - Do Eqs.(1) and (2) satisfy superposition?
 - When is the memristor linear?
 - A memristor is linear iff M is a constant ⇒ Memristor is simply a linear resistor!

Dr. Bharathwaj "Bharath" Muthuswamy

About me.

Presentation Goal and Organization

The Discipline of Circuit Theory

Fundamental Circuit Variables

The Memristor

Memristor Properties

We can generalize Eq.(2) (memristive system):

$$\dot{x} = f(x, i, t)$$
$$v = R(x, i, t)i$$
(3)

 Probably the most relevant property for us: A memristor v - i curve exhibits a pinched hysteresis loop at the origin Introduction to Nonlinear Circuits -The Memristor

Dr. Bharathwaj "Bharath" Muthuswamy

About me.

^Dresentation Goal and Organization

The Discipline of Circuit Theory

Fundamental Circuit Variables

The Memristor

Physical Ideal Memristor

- \blacktriangleright We need to have a relation between q and ϕ
- Exists in the Josephson junction : "phase-dependent" conductance
- Description in "Introduction to Nonlinear Circuits and Networks"

Dr. Bharathwaj "Bharath" Muthuswamy

About me.

Presentation Goal and Organization

The Discipline of Circuit Theory

Fundamental Circuit Variables

The Memristor

Physical Non-Ideal Memristors

Variety of examples:

- Discharge tubes
- ► *pn*-junctions
- Memristors in biology

Dr. Bharathwaj "Bharath" Muthuswamy

About me.

Presentation Goal and Organization

The Discipline of Circuit Theory

Fundamental Circuit Variables

The Memristor

Conclusion and Q/A

- Today we discussed the memristor
- Ongoing work:
 - Work jointly done with TCNJ students (Paul B., Jake B., Matt K.):
 - Role of memristance in chaotic behaviour in the RLD (resistor-inductor-diode) circuit
 - Discharge tube memristance
 - Work done with TCNJ student Dan Funke:
 - Cardiac Memristors
- Ideal memristive behaviour in the Josephson junction
- Electromagnetic field theory for the memristor
- Questions?

Primary references:

- "Memristor The Missing Circuit Element". Chua, L. O. IEEE Transactions on Circuit Theory. 18(5), pp. 507 - 519, 1971.
- "Memristive Devices and Systems". Chua, L. O. and Kang, S. M. Proceedings of the IEEE. 64(2), pp. 209 - 223, 1976.

Introduction to Nonlinear Circuits -The Memristor

Dr. Bharathwaj "Bharath" Muthuswamy

About me.

Presentation Goal and Organization

The Discipline of Circuit Theory

Fundamental Circuit Variables

The Memristor

