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What do I work on? 

Nonlinear Dynamical Systems and Embedded Systems 
 
  - Applications and Mathematical properties of the LCM chaotic circuit  

 - Number Theory (Bharathidasan University, Tiruchy, India) 

 - Local activity (University of Western Australia, Perth, Australia) 

 - Flow manifolds (I.U.T. de Toulon, La Garde Cedex, France) 

  - Applications of Chaotic Delay Differential Equations using Field Programmable Gate Arrays (University Putra Malaysia, Malaysia ) 

  - Pattern Recognition Using Cellular Neural Networks (University of California, Berkeley, USA) 

  - Gait generation using nonlinear dynamics for children with Cerebral Palsy* (Medical College of Wisconsin, Wauwutosa, USA) 

  - Memristive behavior in superconductors (University of California, Berkeley, USA; Vellore Institute of Technology, Vellore, India) 

 

Education 
  - edX program (University of California, Berkeley; Massachusetts Institute of Technology; Harvard University, USA) 

  - Nonlinear Dynamics at the undergraduate level (with folks from all over the world  ) 
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This talk : LCM Chaotic Circuit 



Outline 

I.  Prerequisites for understanding this talk: 

 1.  First course in circuit theory* 

 2.  First course in differential equations 

 

II. Introduction 

 1.  Fundamental Circuit Theory [2] [3] 

 2.  Static vs. Dynamical systems 

 

III.  Steady-state Solutions of Differential equations 

 1.  Simple Harmonic Oscillator 

 2.  Quasi-periodicity 

 3.  Chaos [1] [5] [10] 

 

IV. Physical Realization - electronic circuits 

 1.  LCR circuit 

 2.  LCM circuit [7] 

 3.  Mathematical Property of chaos - The “Dimension” of a chaotic attractor [9] 

 4.  Mathematical Property of chaos - The Frequency Spectrum [7] 

 

V. An Application of Chaos : Human arrhythmia control [4] 

 

VI. References 
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Introduction :  

Fundamental Circuit Theory [2] [3] 
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Memristors were first postulated by Leon. O Chua in 1971 [2] 
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Introduction :  

Static vs. Dynamical Systems 
1. Mathematical definition of a system 
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2. Concept of a linear time-invariant system 
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3. Various system behaviors: stable, unstable 
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Simple Harmonic Oscillator 
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Plots were obtained using SAGE: 

http://www.sagemath.org/index.html  
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Phase portrait: 

Vector field: 

http://www.sagemath.org/index.html


Quasi-Periodicity 

After stable, unstable and oscillatory behavior, we have quasi-periodicity [6] 
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• “Birth” of Chaos:  Lorenz Attractor [8] 

– Edward Lorenz introduced the 

following nonlinear system of 

differential equations as a crude 

model of weather in 1963: 

 

0 0 0

8
Parameters: 10, 28,

3

ICs : 10, 20, 30,

Simulation time: 100 seconds

x y z

    

  

– Lorenz discovered that model dynamics were extremely sensitive to initial 

conditions and the trajectories were aperiodic but bounded. 

– But, does chaos exist physically?  Answer is: YES.   

(8) 

Chaotic Systems [1] [5] [10] 
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LCR Circuit - Derivation of Circuit Equations 
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LCM Circuit - Derivation of Circuit Equations [7]  
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Specifically: 

Parameters: 

1, 3

3 3
= , =   

2 5

C L

 

 

2

    (16)
3 2 2

0.6

y

x z y y
y

z y z yz

x 


  

   

( , )

( , )           

M M M

M

v R z i i

z f z i



            

                      Slide Number: 13/18 

LCM Circuit - Physical Realization [7]  
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Attractors from the Circuit [7]  



Mathematical Property of Chaos -  

“Dimension” of a Chaotic Attractor [9] 
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Mathematical Property of Chaos -  

The Frequency Spectrum [7] 
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An Application of Chaos:  

Human arrhythmia control [4]  
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1.  Arrhythmia = “not in rhythm” = bad   
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Questions? 

 

Now….Computer Science  - SICP! 
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