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What do I work on?
Nonlinear Dynamical Systems and Embedded Systems

- Physical Memristors: discharge tubes, PN junctions and Josephson Junctions

(MSOE; IIT Chennai; Vellore Institute of Technology)

- Applications and Mathematical properties of the Muthuswamy-Chua system

(MSOE; Vellore Institute of Technology; University Putra Malaysia, Malaysia)

- Applications of Chaotic Delay Differential Equations using Field Programmable Gate Arrays  (FPGAs)

(MSOE; Vellore Institute of Technology; University Putra Malaysia, Malaysia)

- Pattern Recognition Using Cellular Neural Networks  on FPGAs  

(MSOE; Vellore Institute of Technology; University of California, Berkeley; Altera Corporation)

Education
- Nonlinear Dynamics at the undergraduate level (with folks from all over the world ☺ )
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Outline
I.  Prerequisites for understanding this talk:

1.  First course in circuit theory*

2.  First course in differential equations

II. Introduction

1.  Fundamental Circuit Theory [2] [3]

2.  Static vs. Dynamical systems

III.  Steady-state Solutions of Differential equations

1.  Simple Harmonic Oscillator

2.  Quasi-periodicity2.  Quasi-periodicity

3.  Chaos [1] [5] [10]

IV. Physical Realization - electronic circuits

1.  The Resistor-Inductor-Diode (RLD) circuit  [9]

2.  LCR circuit

3.  LCM (Muthuswamy-Chua or MC) circuit [7] [11-14]

4.  Mathematical Property of chaos - The “Dimension” of a chaotic attractor [9]

5.  Mathematical Property of chaos - The Frequency Spectrum [7]

V. References
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Introduction : 

Fundamental Circuit Theory [2] [3]
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Memristors were first postulated by Leon. O Chua in 1971 [2]
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Introduction : 

Static vs. Dynamical Systems
1. Mathematical definition of a system

         (1)( ) ( )( ) , : ,y t S x t y x t= → ∈� � �
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out in

R2
v (t)= v (t)     (2)

R1+R2

2. Concept of a linear time-invariant system
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out in

dv
R3C1 +v = v       (3)
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0
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3. Various system behaviors: stable, unstable
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Simple Harmonic Oscillator
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Phase portrait:

2 1
x x= −�

Plots were obtained using SAGE:

http://www.sagemath.org/index.html
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Vector field:



Quasi-Periodicity

After stable, unstable and oscillatory behavior, we have quasi-periodicity [6]
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• “Birth” of Chaos:  Lorenz Attractor [8]

– Edward Lorenz introduced the 
following nonlinear system of 
differential equations as a crude 
model of weather in 1963:

Chaotic Systems [1] [5] [10]

0 0 0

8
Parameters: 10, 28,

3

ICs : 10, 20, 30,

Simulation time: 100 seconds

x y z

σ ρ β= = =

= = =

– Lorenz discovered that model dynamics were extremely sensitive to initial 

conditions and the trajectories were aperiodic but bounded.

– But, does chaos exist physically? Answer is: YES.  

(8)

Slide Number: 9/18



Outline
I.  Prerequisites for understanding this talk:

1.  First course in circuit theory*

2.  First course in differential equations

II. Introduction

1.  Fundamental Circuit Theory [2] [3]

2.  Static vs. Dynamical systems

III.  Steady-state Solutions of Differential equations

1.  Simple Harmonic Oscillator

2.  Quasi-periodicity2.  Quasi-periodicity

3.  Chaos [1] [5] [10]

IV. Physical Realization - electronic circuits

1.  The Resistor-Inductor-Diode (RLD) circuit  [9]

2.  LCR circuit

3.  LCM (Muthuswamy-Chua or MC) circuit [7] [11-14]

4.  Mathematical Property of chaos - The “Dimension” of a chaotic attractor [9]

5.  Mathematical Property of chaos - The Frequency Spectrum [7]

V. References

Slide Number: 10/18



The RLD circuit [9]
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LCR Circuit - Derivation of Circuit Equations
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Circuit equations: 

'    (10)L
v

i
L

=

     (11)
R

v iR= −

Slide Number: 12/18

     (11)
R

v iR= −

ONE differential equation – start with KVL: 0     (12)
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MC Circuit - Derivation of Circuit Equations [7] 

L
c

i
v

C
=�

Circuit equations: 

( )1
' ( , )
L C L L

i v R z i i
L

−
= +

( , )
L

z f z i� �

System equations: 

( )1
( , )     (14)

( , )

y

C

y x R z y y
L

z f z y

x =

−
= +

=

�

�

�
,c Lx v y i� �

( , )

( , )           

M M M

M

v R z i i

z f z i=

�

�

Slide Number: 13/18

( )21
( 1)     (15)

y

C

y x z y
L

z y z yz

x

β

α

=

−
= + −

= − − +

�

�

�

Specifically:
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LCM Circuit - Physical Realization [7] 
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Attractors from the Circuit [7] 
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Mathematical Property of Chaos -

“Dimension” of a Chaotic Attractor [9]
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Mathematical Property of Chaos -

The Frequency Spectrum [7]
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