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What do | work on?
Nonlinear Dynamical Systems and Embedded Systems

- Physical Memristors: discharge tubes, PN junctions and Josephson Junctions

(MSOE; IIT Chennai; University of Western Australia, Perth, Australia; Vellore Institute of Technology (VIT), Vellore, India)
- Applications and Mathematical properties of the Muthuswamy-Chua system

(MSOE; VIT; University of Western Australia; AGH-University of Science and Technology, Poland)
- Applications of Chaotic Delay Differential Equations using Field Programmable Gate Arrays (FPGASs)

(MSOE; VIT; University Putra Malaysia, Malaysia )
- Pattern Recognition Using Cellular Neural Networks on FPGAs

(MSOE; VIT; Altera Corporation)

Education

- Nonlinear Dynamics at the undergraduate level (with folks from all over the world © )
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Primary Goal of this Talk

Overview of my research interests

Slide Number: 3/27



Outline

|. Background
1. The Question of Applications
2. The Science and Art of Device Modeling

lI. The Memristor
The Fundamental Circuit Elements
Properties of the Memristor
Memristive Devices
Memristor Emulator
Physical Memristors
a. Non-ideal Memristors:

i. Discharge tube

ii. Junction diode
b. Ideal memristor:

I. Josephson junction

abk~w -

lll. The Muthuswamy-Chua System (Circuit)

V. FPGA Based Nonlinear Dynamics
1. Chaotic Systems
2. Pattern (Image) Recognition

V. Conclusions, Current (future) work and References

1 | /\ |
) Slide Number: 4/27



The Question of Applications

Scientific discoveries and inventions have only
been achieved by those who went in pursuit of them
without any applications in mind

- Max Planck

Who was Max Planck?

&
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The Science and Art of Device Modeling

We first have to understand that a circuit model
IS not an equivalent circuit of a device since no
physical device can be exactly mimicked by a
circuit or mathematical model [9]. In fact,
depending on the application (e.g., frequency of
operation), a given device may have many
distinct physical models [9]. There is no "best
model” for all occasions. The best model in a
given situation is the simplest model capable of
yielding realistic solutions [9]. Thus device
modeling is both an art (physical device equation
formulation) and science (nonlinear network
synthesis).
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The Fundamental Circuit Elements

Memristors were first postulated by Leon. O Chua in 1971 [2]. In 2008,
researchers at HP claimed to have found the “missing” memristor [11].
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Properties of the Memristor [2] [4]

Circuit symbol: A memristor defines a relation of the from:  g(@,q) =0 (1)

— If g is a single-valued function of charge (flux), then the memristor is
+ charge-controlled (flux-controlled)

_ Memristor i-v relationship: M(q(t)) is the incremental memristance
— d do d :
w248 2299 5y iy @) g
dt dg di dq
q
Q1: Why is the memristor called “memory resistor”?

Because of the definition of memristance: v(t) = M (q(t))i(t) =M ( j i(z')ji(t) (3)

—00

Q2: Why is the memristor not relevant in linear circuit theory?
1. If M(q(t)) is a constant: v(t) =M (q())i(t) = Mi(t) = Ri(t) (4)

2. Principle of superposition is not* applicable. Proof:

M ( [a +i2>(r>]<a +i)(0) =M [ [@@+] (z;)(r)](z; +i)(0) = M [ | (z;)(r)]il(r)w ( [ (z;)(r)]iz(r)
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The functions R and f are defined as:
R:R"XR >R
f:R"XR >R

Memristive Devices [4]

A A :
véR(Z,i)i Z2qREDEMG@ Vv=M(q)i

oG 6) 9=t (©)

*'f

|
In Eq. (5), R(Z,i) A oo
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Memristor Emulation [8]
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Memristor Emulation : Passive Elements only [5]

v1 =nVrln ( ii +2s - ) (7)
¥ e e () o (5
" v
CA—, r  tg=/(ip +2Ig)tanh (2ﬂ$’T) (8)
I xy=v(Vp)~!
xo =1r (Is)™!
X _ fix,u, 1) u=wv, (Vp)~*
a y=ig (Is) ™}
y=g(x,u,t)u (9)

T=t(tg) !

to =27 (wp)~?
B(xo — az) :

ut) = 25
f(x,u,t) |VT(u—ml_gln(gexp(—%—{jﬂsh(%])) ] (10)

=, G
g(x!u? t) = (mz +2) (E)ZTFLP ? (11)
oo r2nd

m=0 (2m)!
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Memristor Emulators — Pinched Hysteresis Loops [8] [9]

E—

| _SoomV __Cha 1.00V __M1.00m
From [3], pinched-hysteresis for 35 kHz sinusoidal input
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Fig. 3 Current-voltage characteristics observed in numerical simulations of the
mathematical model of the proposed circuit for a sine-wave input with [ set to
10 (plot (a)), 100 (plot (b)) and 1000 H z (plot (c)).

From [4]

L=

el A
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Non-ideal Memristor : Discharge Tube [9]

var (V)

M (n)i
n=-pFn+aMn)i’ (12) PRI —"

Mma Lt (13) =

n Figure 3. Simulation versus experimental result for memristor pinched-hysteresis
(Lissajous} figure. v, i, are indicated on the plot. Parameters used for simulation:
A =01La=01F =10=0063 The discharge tube is a Phillips 15 W F15T8.

<
Il

v (V)

a i

K R ‘i o M Figure 4. Simulation versus experimental result for memeistor pinched-hysteresis
{Lissajous) figure. For simulation, we uwsed a 5 H inductor. For the physical setup, we
M used a 300 H inductor and “zeomed-in™ at the origin since the transformer has a

measured secondary inductance of 1400 H at 60 Hz
var [V

= iy (A)
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L

Figure 5. Simulation versus experimental result for memristor pinched-hysteresis
{Lis=zajous) figure. For simulation, we used a | F capacitor; for the physical experiment,
wiz show a ) oF capacitor in parallel.

o
3

Slide Number: 14/27




Non-id

T

(0}

ed

-F

Wn

| Memristor : Junction Diode [3]

Simulation of K,,(g,,) for memristive model of a pn junction diode (Ref. : A Memristive Circuit Model for P-N Junction Diodes, Chua. L. O. and Tseng, Chong-Wei. International
Journal of Circuit Theory and Applications, Vol. 2, 367-389 (1974)

Parameters

Np = 10" em~? (donor concentration)

i, = 1350em? ‘,." V sec {electron mobility)

Hp = 480cm? | V.sec (hole mobility)

Is = 0.5 « 107'? A (dinde saturation current)

Tp = 107" sec (hole recombination life time)
Vr = 26,047 mV (thermal voltage)
Dy = pp Vr (hole diffusion constant)

L, =3/ D, 7, (hole diffusion length)

Wy = 3L, (widthof the n — type region or base width)

T = 300 K (Ambient temperature)

g = 0.9 V (barrier potential)

Ry = Np (approximately) (equilibrium electron concentration in the n — type region)

n; = 8367 « 10° em ™~ (® 300 K) (intrinsic concentration)

i "
-_-
.
th
i =100 1, v Gm) Cj (v}
'l
{2
i2* T (am) Renlaen)

(b)

300

A8, Pap @

= 2.1 » 10° {equilibrium hole concentration in the p — type region)

gqm

Sinh ["—]

ofx_, gm ] t= gy *Bpg 4 Tw iy % [Pog +

Rm [gm_] ==i*-J’:n_l dx (15)

o[x, qm]

Rug (L1

P |
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e
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ldeal Memristor : Josephson Junction [6] [10]

E=h-v (16)
_ 9
2T
_ 49
dt
2ev = h@
dt
2e o _ 49
h dt
d e
¢ —v (17)
dt h

R



ldeal Memristor : Josephson Junction (contd.)
Suppose v = 1 uV. f (in Hz) for the Josephson junction = 0.482 GHZ'

@ 2e

= — (1 uv
. - (1 uv)
2e
7(1 uv)
p— f = =~ 482 MHz
27
dd, _
dt

o, = To-1p (s
Qe
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ldeal Memristor : Josephson Junction (contd.)

In fact, according to the microscopic theory (Josephson
1962), in the case in which V is constant and the transmission coefficient
through the barrier for quasi-particles is small compared to unity, j, is
given by an expression of the form :

Je=J1(V)sing +{og(V)+oy(V)cosd}V. . . . (3.10)

I:I(V)sin(%CDB] + O'O(V)-I-O'I(V)COS(Z%CDB) v (19)
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ldeal Memristor : Josephson Junction (contd.

Teritical (D)

(LRI RN o

it

Y SN N A

-3.x1079 —2./(ILF9 ~Lxo? Lxl® 2kl 3oxio?

(L]
Z.XIU'H

ing(t)

Lx1o™9  2lxio® 3.x|u"5

“axie? laxiof® —1xe?

On 14 Mar 2814, at 16:28, Bharathwaj Muthuswamy =muthuswamy@msoe.edu= wrote:

1. Is it even possible to isolate ONLY the cos{phi) term in the Josephson junction?
2. Does it even make sense to ask if we can isolate the cos{phi) term in the Josephson junction?

Thanks for your email. I think the answer is that the cos(phi) term is non-zero enly when there’'s a non-zero voltage, and then it would be oscillating at a very
high frequency (2eV/h), which probably makes it unsuitable for your purpeoses.

Regards, Brian Josephson

Brian D. Josephson

Emeritus Professor of Physics, University of Cambridge
Director, Mind-Matter Unification Project

Cavendish Laboratory, JJ Thomson Ave, Cambridge CB3 @HE, UK
WWW: http://www.tcm.phy.cam.ac.uk/~bdile

Tel. +44(8)1223 337260/337254
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The Muthuswamy-Chua Circuit [8]

v, = R(z,i,,)i,

. . Circuit equations: System equations:
2= f(2,1y) ;
C . V. =L X2y ,yE x:l
I 1M C c L C
i -l I . i’ :_—1(\/ + R(z,1,)i ) ’:_—1(x+R(z )y) (21
viL VC ) L= \c RIWad} y I » Y)Y
LBV, VoM i2fGi) @) FTTEY
Specifically: i
5= % Parameters:
- C=1L=3
y=—(x+p-Dy) @ 3 3
L ﬂ:a, =5

I==y—0z+)z

L=
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x=f(x,x(r—7)) (23)

x=usin(x(t—7))—ax(t) (24)

-3 2 -1 0 1 2 3 4 5

Fig. 5. Result from hardware co-simulation, plotted using XY graph in Simulink. y-axis is
z(t), z — azis is z(f — 7).

FPGA Based Nonlinear Dynamics: Chaotic Systems [12]

[?frel
Tilf)
I
flx(t), ot — N)) ————>= x + Q (1)
>
’—b ’Tl—w— R
50 MHz
input reset 8—)
clock  reset Shift Register i — N)
Clock !
Divider Fhnier = 61
Flow Status Successful - Tue Dec 03 21:55:49 2013

Quartus IT 32-bit Version
Revision Name
Top-evel Entity Name
Family
Device
Timing Models
Total logic elements
Total combinational functions
Dedicated logic registers
Total registers
Total pins
Total virtual pins
Total memory bits
Embedded Multiplier 9-bit elements
Total PLLs

12.0 Build 178 05/31/2012 S Ful Version
DE2ChaoticDDEs
DE2ChaoticDDEs

Cydone IVE
EP4CE115F29C7

Final

18,268 [ 114,480 ( 16 %)
16,788 [ 114,480 (15 %)
8,977 /114,480 (8 %)
8977

104 /529 (20 %)

0

70,559 [ 3,981,312(2 %)
117 /532(22 %)
1/4(25%)
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FPGA Based Nonlinear Dynamics:
Pattern (Image) Recognition

Utilize ideas behind the retinal hypercircuit (Werblin
Lab, Berkeley) for recognition of hand-drawn circuit
diagrams

(=)
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Conclusions

» Qverview of my research
 Memristors
 Chaos
« FPGAs
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Current and Future Work

. Wrapping up FPGA based nonlinear dynamics

Understanding chaotic dynamics of the Muthuswamy-
Chua system

|dentifying ideal memristive behavior in the Josephson
junction (with IIT-Chennai and VIT)

Complete SPICE model of junction diode with memristor
(with Dr. Jevtic (MSOE))

An electromagnetic field (physical) theory for memristors
(with Dr. Jevtic and Dr. Thomas (MSOE))

- Specifically for 3. and 4., use the idea of frequency-
power formulae?

FPGA Based Nonlinear Dynamics: Pattern Recognition
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MANY THANKS TO DR. JEVTIC AND DR. THOMAS (MSOE)
Questions and Discussion...
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