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In this work, we propose to analyze the model shown in Figure 1 for the
Josephson junction. The capacitor C models junction capacitance, the flux-
controlled memristor M models the interference among quasi-particle pairs, the
nonlinear inductor L is the standard junction current1. The shunt composed of
the linear resistor R and linear inductor L is used in high frequency applications.
This inductive shunt is part of the more accurate RCLSJ model of the Josephson
junction [3].

Figure 1: A proposed model for the Josephson junction. Passive sign convention
is used for all current-voltage relationships. Current through the memristor is
given by G cos(k0φ) and current through the nonlinear inductor is given by
I0 sin(φ). φ = h

4πe
γ where h is Planck’s constant, e is magnitude of electron

charge, γ is the phase difference of the superconducting order parameter across
the junction [5].

1Note that in most lumped circuit models of the Josephson junction, the nonlinear inductor
is usually represented by a pair of triangles [3]. However, the correct symbol that should be
used is that of a nonlinear inductor.
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The normalized circuit equations are Eqs.(1) through (3)

φ̇ = v (1)

v̇ =
1

C
(i−G cos(k0φ)v − I0 sin(φ)− ix) (2)

i̇x =
1

L∗
(v − ixR) (3)

The model above was obtained from considering the microscopic theory of
Josephson junctions [4]. In Josephson’s original papers dealing with thin-film
junctions, the coefficients G, k0 and I0 in Eq.(2) are dependent on junction
voltage [4]. However, this dependence may be neglected provided the voltage
stays small when compared to the energy-gap voltage of the individual super-
conductors [1] Josephson mentions that the cos term in Eq.(2) contributes to
damping effects. Although a similar circuit model was proposed in [2], the shunt
inductive branch is not included.

A phase-plot of the simulated attractor obtained from Eqs.(1) through (3)
is shown in Fig 2.
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Figure 2: Plot of (v(t), ix(t)). Initial conditions are φ(0) = 0, v(0) =
1.25, ix(0) = 1.4. Parameters are C = 1, i = 1, G = 1, k0 = 2, I0 = 1, L =
8, R = 1. Simulation was carried out for 10000 steps using an explicit Euler
method in Mathematica 8.
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