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Abstract : In this paper, we will discuss chaotic dynamics. Commonly associated with the “Butterfly Effect”, we will see 

chaotic dynamics can be used to gain insights into varied concepts such as steady state solutions of differential equations, 

dimensions of phase space objects and the Fourier transform. All code in this paper uses the open source SAGE (Software 

for Algebraic and Geometric Experimentation) tool. 
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Outline 

I.  Prerequisites for understanding this talk: 

 1.  First course in circuit theory* 

 2.  First course in differential equations 

 

II. Introduction 

 1.  Fundamental Circuit Theory [2] [3] 

 2.  Static vs. Dynamical systems 

 

III.  Steady-state Solutions of Differential equations 

 1.  Simple Harmonic Oscillator 

 2.  Quasi-periodicity 

 3.  Chaos [1] [5] [10] 

 

IV. Some Properties of Chaotic Systems 

 1.  The “Dimension” of a chaotic attractor [9] 

 2.  The Frequency Spectrum [7] 

 

V.  Physical Chaos – Sprott circuits 

 

VI. An Application of Chaos : Human arrhythmia control [4] 

 

VII. References 
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Introduction :  

Fundamental Circuit Theory [2] [3] 
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Introduction :  

Static vs. Dynamical Systems 
1. Mathematical definition of a system 
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         (1)( ) ( )( ) , : ,y t S x t y x t  

out in

R2
v (t)= v (t)     (2)

R1+R2

2. Concept of a linear time-invariant system 

out
out in

dv
R3C1 +v = v       (3)

dt

t -(t-τ)

-t/(R3C1) R3C1
out out in

0

1
v (t)= v (0)e e v (τ)dτ    (4)

R3C1
 

3. Various system behaviors : stable, unstable 



Steady State Solutions of  

Differential Equations 

Simple Harmonic Oscillator: 
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Plots were obtained using SAGE: 

http://www.sagemath.org/index.html  
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Phase portrait: 

Vector field: 

http://www.sagemath.org/index.html


Steady State Solutions of  

Differential Equations (contd.) 
After stable, unstable and oscillatory behavior, we have quasi-periodicity [6] 

            

                        Slide Number: 6/12 

2 4 2

0

2

1
( ) 0    (7)

2
x z x x x x

z x

 



     

 



• “Birth” of Chaos:  Lorenz Attractor [8] 

– Edward Lorenz introduced the 

following nonlinear system of 

differential equations as a crude 

model of weather in 1963: 

 

0 0 0

8
Parameters: 10, 28,

3

ICs : 10, 20, 30,

Simulation time: 100 seconds

x y z

    

  

– Lorenz discovered that model dynamics were extremely sensitive to initial 

conditions and the trajectories were aperiodic but bounded. 

– But, does chaos exist physically?  Answer is: YES.   

(8) 

Steady State Solutions of Differential Equations -  

Chaotic Systems [1] [5] [10] 
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Some Properties of Chaotic Systems -  

“Dimension” of a Chaotic Attractor [9] 
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Some Properties of Chaotic Systems -  

The Frequency Spectrum [7] 
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Simple Chaotic Circuit using Jerky Dynamics [9] 

( ) 0    (11)x x x f x   

Physical Chaos -  

Sprott Circuits 
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An Application of Chaos:  

Human arrhythmia control [4]  
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1.  Arrhythmia = “not in rhythm” = bad   
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Questions? 

 

            

                                 Slide Number: 12/12 


