
 OPTIMAL CNN TEMPLATES FOR LINEARLY-SEPARABLE ONE-DIMENSIONAL
CELLULAR AUTOMATA

P.J. Chang and Bharathwaj Muthuswamy
University of California, Berkeley

Department of Electrical Engineering and Computer Sciences
Berkeley, California

Abstract

In this tutorial, we present optimal Cellular Nonlinear Network (CNN) templates for

implementing linearly-separable one-dimensional (1-D) Cellular Automata (CA). From the

gallery of CNN templates presented in this paper, one can calculate any of the 256 1-D CA Rules

studied by Wolfram using a CNN Universal Machine chip that is several orders of magnitude

faster than conventional programming on a digital computer.

1 Introduction

The main purpose of this paper is to derive the optimal Cellular Nonlinear Network (CNN)

templates for linearly-separable one-dimensional (1-D) Cellular Automata (CA). A gallery of

optimal CNN templates for linearly-separable 1-D CA is presented, and an appendix is included

to illustrate the template derivation algorithm. These optimal templates may be implemented on

any CNN universal chip [Chua & Roska, 2002], thereby allowing faster calculation of any of the

256 1-D CA rules [Wolfram, 2002] by several orders of magnitude. Such great enhancement in

speed will enable researchers on CA to conduct extensive simulations over much longer periods

(e.g., over many trillions of iterations) of Wolfram’s class 3 and 4 CA rules than currently

feasible.

A. Truth Tables and Boolean Functions

Boolean Functions are described by truth tables. For the purpose of this paper, the inputs to

the truth tables are binary 3-tuples, (xi-1, xi, xi+1). That is, each of xi-1, xi, xi+1 can be either 1

or 0, leading to the generation of 23 = 8 input combinations, listed in order as (0,0,0), (0,0,1),

(0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1). Each 3-tuple input is mapped to a binary

output y that is also either 1 or 0. Thus, there are 28 = 256 possible truth tables generated

from 3 binary inputs. Each of these 256 truth tables corresponds to a unique Boolean

Function, which is named as the decimal equivalent of the binary number formed by

concatenating the output of each row in the truth table in reverse order. For example, when

mapping (0,0,0) to 0, (0,0,1) to 1, (0,1,0) to 1, (0,1,1) to 1, (1,0,0) to 0, (1,0,1) to 1, (1,1,0) to

1, (1,1,1) to 0, the outputs may be written as the 8-tuple binary code (0,1,1,1,0,1,1,0).

Concatenating these outputs in reverse order results in the binary number 01101110, whose

decimal equivalent is 110. The corresponding Boolean Function is thus named as 110, which

equals 0‧27 + 1‧26 + 1‧25 + 0‧24 + 1‧23 + 1‧22 + 1‧21 + 0‧20. Figure 1 presents that truth table

and the derivation of the name.

Figure 1. The derivation of Boolean Function 110 and its truth table

B. Cellular Automata

A cellular automaton is a collection of cells that iterates on a set of rules, creating a new

generation of cells with each iteration. A 1-D CA is a string of cells. It is assumed that the

boundary condition is periodic, so that the string of cells is effectively a ring of cells as

illustrated in Figure 2 for the case of a 1-D CA made of 10 cells.

Figure 2. A sample 1-D 10-cell CA initial condition and its periodic boundary condition

The set of rules that govern the cells of the 1-D CA are summarized by 256 3-tuple truth

tables. Each truth table is a Boolean Rule that dictates a distinct 1-D CA pattern from a given

initial condition. For the purposes of studying 1-D CA, the initial condition would be a string

of cells of an arbitrary length greater than or equal to 3 cells. Each cell would indicate a value

of “0” or “1”. To find the output of each cell of a particular 1-D cellular automaton according

to a fixed Boolean Rule, the cell in question is seen as xi, its left neighbor as xi-1, and its right

neighbor as xi+1. The corresponding output yi mapped from the resulting (xi-1, xi, xi+1) in the

truth table would be the output of the cell xi. For example, let {1,1,0,1} be a sample initial

condition bit string of length 4 for a 1-D 4-cell CA, given the truth table of Boolean Function

110, usually dubbed local Rule 110 in literature. Consider the third cell that contains “0.” The

left and right neighbor cells are the second and fourth cells, respectively, both containing “1.”

The output of the third cell would be the output y mapped from the 3-tuple (1,0,1) from the

truth table of local Rule 110. According to the truth table, when xi-1 = 1, xi = 0, and xi+1 = 1,

the output yi is 1, and hence the output of the third cell is “1.” The same process is repeated

for each cell listed in the initial condition, resulting in the new evolution {0,1,1,1}, and

completes one iteration of the 1-D CA. This new evolution, {0,1,1,1} would be the new

initial condition for the next iteration. If all the cells containing “1” are colored red, and all

the cells containing “0” are colored blue, then a pattern begins to emerge from the evolutions

after several iterations. The first iteration for local Rule 110 is derived in Figure 3.

Figure 3. Starting with a sample initial condition, the next generation is found for Boolean Function 110.

In order to discover the distinct 1-D CA pattern generated by a local Rule and given initial

condition, one would have to run the CA through several iterations. Some local Rules even

have never-ending patterns1 formed from almost all possible initial conditions, such as Rules

30 (binary code 00011110) and 110 (binary code 01101110), as illustrated by Figure 4, when

assuming an infinite number of cells.

1 Even for just 100 cells, there are 2100 distinct bit-string patterns.

Figure 4(a). The pattern generated from rule 30 for a random initial condition. Notice how there is no repeated

iteration.

Figure 4(b). The pattern generated from rule 110 for a random initial condition. Notice how there is no

repeated iteration.

A Personal Computer (PC), which only has limited processing speed, certainly will not return

these patterns instantaneously, especially if the initial condition bit string increases in length.

Investigating higher dimensions of CA also poses future problems in pattern finding with a

PC. A CNN universal chip is ideal for automation of n-cell 1-D CA not exceeding the array

size of the chip.2 Thus, a CNN provides a dynamical system that completely predicts the CA

evolution for any initial condition. The CNN chip has high processing speed (it can process

under 1 nanosecond per iteration!), low power dissipation, and parallel processing. [Chua et

al, 2002] All that is needed to program a CNN universal chip to automate the pattern-

generation is templates that describe the Boolean Rules. These templates are found from

corresponding Boolean Cubes.

C. Boolean Cubes

Since the 8 possible outputs in each truth table is either 0 or 1, there are 28 = 256 possible

Boolean Functions/Rules. Each of these 256 Boolean Rules can be represented as a three-

dimensional Boolean Cube for better visualization and analysis. For the reader’s convenience,

Table 1 from [Chua et al, 2003] is reprinted herein as Table 1. Note that the Cubes that have

numbers labeled in red are linearly-separable, while the Cubes that have numbers labeled in

blue are linearly non-separable; these terms will be clarified in the following Section D. The

lower box describes the coloring of the vertices of the Cubes, and how the vertices’

coordinates are derived from substituting “-1” for “0” for use in determining an analytical

formula. Please refer to Figure 5 in deriving the analytical truth table and hence the

coordinates of the vertices.

2 The current commercially available CNN chip has an array size of 176 x 144 [Anafocus, 2007].

Table 1. Encoding 256 local rules defining a binary 1D CA onto 256 corresponding “Boolean Cubes” [Chua et. al, 2003].

Table 1 (continued)

Table 1 (continued)

Table 1 (continued)

To recapitulate, in determining the Cube, if all the symbolic 0 values in the truth tables are

replaced as -1 for numerical analytical purposes, then the new input values ui-1, ui, ui+1 would

be the coordinates of the Cube’s vertices, with u = x - 1. The vertices would be colored

according to the associated output yi such that each Rule is represented as a unique Cube;

vertices would be colored blue if the associated output is -1, and vertices would be colored

red if the associated output is 1. The corresponding analytic truth table and Boolean Cube for

Rule 110 is presented in Figure 5.

Figure 5. Converting symbolic truth table into analytic truth table to derive Boolean Cube. The 8-bit binary

string is the binary number whose decimal equivalent is the name of the local Rule.

D. Complexity Index

These 256 Boolean Cubes may be categorized according to complexity. Each Cube is

assigned a complexity index κ, which is the minimum number of planes needed to separate

red vertices to one side of the plane, and blue vertices to the other. This complexity index is

determined by inspection of the color of the 8 vertices in the Boolean Cube. Cubes that have

κ= 1 require only 1 plane to separate the red vertices from the blue, and are linearly-

separable, e.g. the Cube for Rule 16. Cubes that have κ= 2 require 2 planes, such as the Cube

for Rule 18, and Cubes that have κ= 3 require 3 planes, such as the Cube for Rule 150, as

shown in Figure 6. These Cubes that require more than 1 plane to separate the red and blue

vertices are linearly non-separable. The highest complexity index possible for the 256 1-D

CA Boolean Cubes is 3.

Figure 6. Rule 16 has κ=1, Rule 18 has κ=2, Rule 150 has κ= 3. The 8-bit binary string above each Boolean

Cube denotes the binary number whose decimal equivalent is the name of each local Rule.

There are 104 Boolean Cubes that are linearly-separable; the corresponding 104 Boolean

Rules are listed in Table 2. Tables 3 and 4 list κ= 2 and κ= 3 Rules respectively. To program

a CNN universal chip to generate the pattern associated with a given Rule, templates

describing the Rule must be specified as data input of the program automatically by the CNN

operating system that comes with the chip.

Table 2. All 104 Linearly-Separable Rules, κ= 1

Table 3. All κ= 2 Rules

Table 4. All κ= 3 Rules

E. Templates

Three templates are needed to program a CNN universal chip: the A template, the B template,

and the z template (Figure 8). The A template is the feedback term of the CNN nonlinear

differential equation. For simplicity and robustness, a00 is chosen to be 1, while the other

cells of the templates are 0. In the linearly-separable cases, the B and z templates are

obtained from the orientation vector [Chua et al, 2002] and [Dogaru & Chua, 1998], or

normal vector, and the offset of the single separating plane respectively. These templates also

convey the equation that describes the outputs of the corresponding truth table. Usually, the

output equation is a signum function, sgn, involving analytical variables ui-1, ui, ui+1, since the

CNN chip operates analytically. This signum function can be converted into a sign function,

s, involving symbolic variables xi-1, xi, xi+1 in accordance to symbolic truth tables for better

understanding. The signum and sign functions are presented in Figure 7. The separating

plane and resulting B and z templates are shown in Figure 8 for Rule 204, which is linearly

separable.

Figure 7. y = sgn (x) and y = s(x), respectively.

Figure 8. The Standard 1-D CA Templates and the derivation of the templates for Rule 204.

Rules that have higher complexity indices are not linearly-separable, but they always can be

decomposed into two or three linearly-separable Rules by Boolean Operations (AND , OR).

These Rules are also known as linearly non-separable Rules. An example is Rule 184, which

is equivalent to Rule 186 AND Rule 248 as presented by Figure 9. Table 5 provides a

synthesis of all the higher complexity Rules.

Figure 9. Rule 184 is Rule 186 AND Rule 248.

Table 5. Synthesis of Linearly Non-Separable Boolean Rules via Boolean Operation (AND, OR) using Linearly-Separable Rules

Table 5 (continued)

Table 5 (continued)

Therefore, instead of finding the templates for all 256 1-D CA Rules, it is sufficient to

implement the templates of the 104 linearly-separable Rules to program the CNN universal

chip.

Figure 10. In order to program the CNN chip for Rule 184, the templates for Rules 186 and 248 are used.

F. Optimal Templates

Mathematically speaking, there are an infinite number of possible separating planes. Since

the B and z templates are based on the normal vector and the offset of the separating plane,

respectively, there are also an infinite number of possible templates per Boolean Rule. This is

easily seen in the example of Rule 16, shown in Figure 11.

Figure 11. Here are 3 possible separating planes for Rule 16.

To provide a basis for studies concerning CNN universal chips and Boolean Rules, it is best

to adhere to a standard set of templates. Among the infinite template possibilities, there is

only one set of optimal CNN templates. In this paper, the optimal separating plane is defined

as the plane that is at the maximum projected distance possible from each of the cube’s 8

vertices, but which still separates the red vertices from the blue ones. The corresponding

optimal CNN templates are derived from the normal vectors and offsets of these optimal

separating planes. An algorithm to find this plane is provided in the Appendix. In short, a

plane is selected that satisfactorily separates the red vertices from the blue. The projected

distance from each vertex to the plane is found, and the minimum distance is maximized by

adjusting the plane until an optimal plane is achieved.

2 Gallery of Templates

The optimal CNN templates of the 104 linearly-separable 1-D CA are implemented and

presented in table 6. The truth table, Cube, templates, and output formula are presented for each

of the 104 Boolean Rules. The truth tables and output formula use symbolic variables xi-1, xi, xi+1

for better understanding, but the templates are found based on analytic variables ui-1, ui, ui+1 since

the CNN universal chip operates on a numerical analytical basis.

Table 6. A Gallery of Templates of all 104 Linearly Separable CA

3 Concluding Remarks

After compiling a library of optimal CNN templates for linearly-separable 1-D CA, a next step

would be to optimize the current library for 2-D CA. Interested readers may browse the

Appendix to use the algorithm to implement the optimal CNN templates for linearly-separable 1-

D CA, and then move on to investigating 2-D CA. In the process of compiling the optimal CNN

templates for linearly-separable 1-D CA, differences between the optimal CNN templates and

those provided in [Chua, et al, 2002] may be noted. In particular, the templates for Rule 63 are

incorrect, and should be revised as follows: [b1, b2, b3] should equal to [-1, -1, 0] instead of [0, -1,

0]. To check the validity of the templates generated by the algorithm, the CANDY simulator was

run and the dynamic firing patterns were compared.

4 Acknowledgements

Many thanks to Ram Rajagopal for helping with SVM concepts and Akos Zarandi for showing

us how to use CANDY to simulate CA.

References

Anafocus Ltd. [2007] The Q-Eye CMOS Focal-Plane Image Sensor-Processor (visual

microprocessor). http://www.anafocus.com.

Chua, L. O. & Roska, T. [2002] Cellular Neural Networks and Visual Computing: Foundations

and Applications (Cambridge University Press).

Chua, L.O., Yoon, S., & Dogaru, R. [2002] “A Nonlinear Dynamics Perspective of Wolfram’s

New Kind of Science. Part I: Threshold of Complexity,” Int. J. of Bifurcation and Chaos

12(12), 2655-2766.

Chua, L.O., Sbitnev, V.I., & Yoon, S. [2003] “A Nonlinear Dynamics Perspective of Wolfram’s

New Kind of Science. Part II: Universal Neuron,” Int. J. of Bifurcation and Chaos, 13(9),

2377-2491.

Dogaru, R. & Chua, L. O. [1998] “CNN Genes for one-dimensional cellular automata: A multi-

nested piecewise-linear approach,” Int. J. Bifurcation and Chaos 8(10), 1987-2001.

Moore, A. [2007] Support Vector Machines. http://www.autonlab.org/tutorials/svm15.pdf

Schwaighofer, A. [2002] SVM toolbox for MATLAB.

http://ida.first.fraunhofer.de/~anton/software.html

Wolfram, S. [2002] A New Kind of Science (Wolfram Media, Inc., Champaign Illinois, USA).

Appendix

In order to find the optimal separating plane, we use the concept of Support Vector Machines

[Moore, 2007]. Often we are interested in classifying data. These data points may not necessarily

be points in 2ℜ but may be multidimensional nℜ points. We are interested in whether we can

separate them by a n-1 dimensional hyperplane. This is a typical form of linear classifier. There

are many linear classifiers that might satisfy this property. However, we are additionally

interested to find out if we can achieve maximum separation (margin) between the two classes.

Now, if such a hyperplane exists, the hyperplane is clearly of interest and is known as the

maximum-margin hyperplane.

Figure 12. Maximum-margin hyperplanes for a SVM trained with samples from two classes. Samples along the

hyperplanes are called support vectors

Consider Figure 12. The goal is to separate the ”x”s from the “o”s3 using a hyperplane that is at

maximum distance between the two classes. We can consider the data points to be of the form:

)},(,),,(),,{(2211 nn cxcxcx K

3 In our case, the “x”s could be the red vertices and the “o”s could be the blue vertices. We have thus colored the
“x”s and “o”s that would give rise to the support vectors.

Here the ic is either 1 or -1. This constant denotes the class to which point ix belongs to (for

instance, if the point is an “x” then ic is 1 and if the point is a “o” then ic is -1). Each ix is a n-

dimensional real vector, usually of scaled [0,1] or [-1,1] values. Now, the dividing hyperplane

takes the form:

0=−⋅ bxw

The vector w points perpendicular to the separating hyperplane. Adding the offset parameter

b allows us to increase the margin. In its absence, the hyperplane is forced to pass through the

origin, restricting the solution. As we are interested in the maximum margin, we are interested in

the support vectors and the parallel hyperplanes closest to these support vectors in either class,

refer to Figure 12 It can be shown that these hyperplanes can be described by equations:

1
,1
−=−⋅

=−⋅
bxw
bxw

In our case, the points are linearly separable. Therefore we can select the hyperplanes so that

there are no points between them and then try to maximize their distance. By using geometry,

we find the distance between the hyperplanes is
||

2
w

, so we want to minimize || w . To exclude

data points, we need to ensure that for all i either:

1
,1
−≤−⋅

≥−⋅
bxw

orbxw

i

i

This can be rewritten as:
(1) nibxwc ii ≤≤≥−⋅ 1,1)(

The problem now is to minimize || w subject to the constraint in (1). That is:

 tosubject | | Minimize nibxwcw ii ≤≤≥−⋅ 1,1)(

The equation above can be solved using a mathematical package. We use the MATLAB toolbox

from [Schwaighofer, 2002] (you need to have the Optimzation toolbox from Mathworks). First

download and unzip the toolbox from [Schwaighofer, 2002]. Here are MATLAB commands to

find the normal vector and the offset of the optimal-separating plane for Rule 95. The first line

sets up the input vector, the second line the output vector corresponding to rule 95. The last two

lines use the SVM toolbox to obtain the normal vector w and the offset b for the optimal

separating plane.

>> U = [-1 -1 -1;-1 -1 1;-1 1 -1; ...
-1 1 1;1 -1 -1;1 -1 1;1 1 -1;1 1 1];
>> Y95 = [1;1;1;1;1;-1;1;-1];
>> net_setup = svm(3,'linear',[],10);
>> net95 = svmtrain(net_setup,U,Y95)

