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Abstract 

In this tutorial, we present optimal Cellular Nonlinear Network (CNN) templates for 

implementing linearly-separable one-dimensional (1-D) Cellular Automata (CA). From the 

gallery of CNN templates presented in this paper, one can calculate any of the 256 1-D CA Rules 

studied by Wolfram using a CNN Universal Machine chip that is several orders of magnitude 

faster than conventional programming on a digital computer. 

 

1 Introduction 

The main purpose of this paper is to derive the optimal Cellular Nonlinear Network (CNN) 

templates for linearly-separable one-dimensional (1-D) Cellular Automata (CA). A gallery of 

optimal CNN templates for linearly-separable 1-D CA is presented, and an appendix is included 

to illustrate the template derivation algorithm. These optimal templates may be implemented on 

any CNN universal chip [Chua & Roska, 2002], thereby allowing faster calculation of any of the 

256 1-D CA rules [Wolfram, 2002] by several orders of magnitude. Such great enhancement in 

speed will enable researchers on CA to conduct extensive simulations over much longer periods 

(e.g., over many trillions of iterations) of Wolfram’s class 3 and 4 CA rules than currently 

feasible. 

 

A. Truth Tables and Boolean Functions 

Boolean Functions are described by truth tables. For the purpose of this paper, the inputs to 

the truth tables are binary 3-tuples, (xi-1, xi, xi+1). That is, each of xi-1, xi, xi+1 can be either 1 

or 0, leading to the generation of 23 = 8 input combinations, listed in order as (0,0,0), (0,0,1), 

(0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1). Each 3-tuple input is mapped to a binary 

output y that is also either 1 or 0. Thus, there are 28 = 256 possible truth tables generated 

from 3 binary inputs. Each of these 256 truth tables corresponds to a unique Boolean 

Function, which is named as the decimal equivalent of the binary number formed by 



concatenating the output of each row in the truth table in reverse order. For example, when 

mapping (0,0,0) to 0, (0,0,1) to 1, (0,1,0) to 1, (0,1,1) to 1, (1,0,0) to 0, (1,0,1) to 1, (1,1,0) to 

1, (1,1,1) to 0, the outputs may be written as the 8-tuple binary code (0,1,1,1,0,1,1,0). 

Concatenating these outputs in reverse order results in the binary number 01101110, whose 

decimal equivalent is 110. The corresponding Boolean Function is thus named as 110, which 

equals 0‧27 + 1‧26 + 1‧25 + 0‧24 + 1‧23 + 1‧22 + 1‧21 + 0‧20. Figure 1 presents that truth table 

and the derivation of the name. 

 

 
Figure 1. The derivation of Boolean Function 110 and its truth table 

 

B. Cellular Automata 

A cellular automaton is a collection of cells that iterates on a set of rules, creating a new 

generation of cells with each iteration. A 1-D CA is a string of cells. It is assumed that the 

boundary condition is periodic, so that the string of cells is effectively a ring of cells as 

illustrated in Figure 2 for the case of a 1-D CA made of 10 cells.  



 
Figure 2. A sample 1-D 10-cell CA initial condition and its periodic boundary condition 

 

The set of rules that govern the cells of the 1-D CA are summarized by 256 3-tuple truth 

tables. Each truth table is a Boolean Rule that dictates a distinct 1-D CA pattern from a given 

initial condition. For the purposes of studying 1-D CA, the initial condition would be a string 

of cells of an arbitrary length greater than or equal to 3 cells. Each cell would indicate a value 

of “0” or “1”. To find the output of each cell of a particular 1-D cellular automaton according 

to a fixed Boolean Rule, the cell in question is seen as xi, its left neighbor as xi-1, and its right 

neighbor as xi+1. The corresponding output yi mapped from the resulting (xi-1, xi, xi+1) in the 

truth table would be the output of the cell xi. For example, let {1,1,0,1} be a sample initial 

condition bit string of length 4 for a 1-D 4-cell CA, given the truth table of Boolean Function 

110, usually dubbed local Rule 110 in literature. Consider the third cell that contains “0.” The 

left and right neighbor cells are the second and fourth cells, respectively, both containing “1.” 

The output of the third cell would be the output y mapped from the 3-tuple (1,0,1) from the 

truth table of local Rule 110. According to the truth table, when xi-1 = 1, xi = 0, and xi+1 = 1, 

the output yi is 1, and hence the output of the third cell is “1.” The same process is repeated 

for each cell listed in the initial condition, resulting in the new evolution {0,1,1,1}, and 



completes one iteration of the 1-D CA. This new evolution, {0,1,1,1} would be the new 

initial condition for the next iteration. If all the cells containing “1” are colored red, and all 

the cells containing “0” are colored blue, then a pattern begins to emerge from the evolutions 

after several iterations. The first iteration for local Rule 110 is derived in Figure 3. 

 

 
Figure 3. Starting with a sample initial condition, the next generation is found for Boolean Function 110. 

 

In order to discover the distinct 1-D CA pattern generated by a local Rule and given initial 

condition, one would have to run the CA through several iterations. Some local Rules even 

have never-ending patterns1 formed from almost all possible initial conditions, such as Rules 

30 (binary code 00011110) and 110 (binary code 01101110), as illustrated by Figure 4, when 

assuming an infinite number of cells.  

 

 
                                                 
1 Even for just 100 cells, there are 2100 distinct bit-string patterns. 



 
Figure 4(a).  The pattern generated from rule 30 for a random initial condition.  Notice how there is no repeated 

iteration. 

 



 
Figure 4(b).  The pattern generated from rule 110 for a random initial condition.  Notice how there is no 

repeated iteration. 

 

 



A Personal Computer (PC), which only has limited processing speed, certainly will not return 

these patterns instantaneously, especially if the initial condition bit string increases in length. 

Investigating higher dimensions of CA also poses future problems in pattern finding with a 

PC. A CNN universal chip is ideal for automation of n-cell 1-D CA not exceeding the array 

size of the chip.2 Thus, a CNN provides a dynamical system that completely predicts the CA 

evolution for any initial condition. The CNN chip has high processing speed (it can process 

under 1 nanosecond per iteration!), low power dissipation, and parallel processing. [Chua et 

al, 2002] All that is needed to program a CNN universal chip to automate the pattern-

generation is templates that describe the Boolean Rules. These templates are found from 

corresponding Boolean Cubes. 

 

C. Boolean Cubes 

Since the 8 possible outputs in each truth table is either 0 or 1, there are 28 = 256 possible 

Boolean Functions/Rules. Each of these 256 Boolean Rules can be represented as a three-

dimensional Boolean Cube for better visualization and analysis. For the reader’s convenience, 

Table 1 from [Chua et al, 2003] is reprinted herein as Table 1. Note that the Cubes that have 

numbers labeled in red are linearly-separable, while the Cubes that have numbers labeled in 

blue are linearly non-separable; these terms will be clarified in the following Section D. The 

lower box describes the coloring of the vertices of the Cubes, and how the vertices’ 

coordinates are derived from substituting “-1” for “0” for use in determining an analytical 

formula. Please refer to Figure 5 in deriving the analytical truth table and hence the 

coordinates of the vertices. 

 

 

 

 

 

 

 

 

                                                 
2 The current commercially available CNN chip has an array size of 176 x 144 [Anafocus, 2007]. 



Table 1. Encoding 256 local rules defining a binary 1D CA onto 256 corresponding “Boolean Cubes” [Chua et. al, 2003]. 

 



Table 1 (continued) 

 



Table 1 (continued) 

 



Table 1 (continued) 

 



To recapitulate, in determining the Cube, if all the symbolic 0 values in the truth tables are 

replaced as -1 for numerical analytical purposes, then the new input values ui-1, ui, ui+1 would 

be the coordinates of the Cube’s vertices, with u = x - 1. The vertices would be colored 

according to the associated output yi such that each Rule is represented as a unique Cube; 

vertices would be colored blue if the associated output is -1, and vertices would be colored 

red if the associated output is 1. The corresponding analytic truth table and Boolean Cube for 

Rule 110 is presented in Figure 5. 

 
Figure 5. Converting symbolic truth table into analytic truth table to derive Boolean Cube. The 8-bit binary 

string is the binary number whose decimal equivalent is the name of the local Rule. 

 



D. Complexity Index 

These 256 Boolean Cubes may be categorized according to complexity. Each Cube is 

assigned a complexity index κ, which is the minimum number of planes needed to separate 

red vertices to one side of the plane, and blue vertices to the other. This complexity index is 

determined by inspection of the color of the 8 vertices in the Boolean Cube. Cubes that have 

κ= 1 require only 1 plane to separate the red vertices from the blue, and are linearly-

separable, e.g. the Cube for Rule 16. Cubes that have κ= 2 require 2 planes, such as the Cube 

for Rule 18, and Cubes that have κ= 3 require 3 planes, such as the Cube for Rule 150, as 

shown in Figure 6. These Cubes that require more than 1 plane to separate the red and blue 

vertices are linearly non-separable. The highest complexity index possible for the 256 1-D 

CA Boolean Cubes is 3. 

 

 
Figure 6. Rule 16 has κ=1, Rule 18 has κ=2, Rule 150 has κ= 3. The 8-bit binary string above each Boolean 

Cube denotes the binary number whose decimal equivalent is the name of each local Rule. 
 

 

There are 104 Boolean Cubes that are linearly-separable; the corresponding 104 Boolean 

Rules are listed in Table 2. Tables 3 and 4 list κ= 2 and κ= 3 Rules respectively. To program 

a CNN universal chip to generate the pattern associated with a given Rule, templates 

describing the Rule must be specified as data input of the program automatically by the CNN 

operating system that comes with the chip. 

 

 



 

 

 

 

 

Table 2. All 104 Linearly-Separable Rules, κ= 1 

 



Table 3. All κ= 2 Rules 

 
 

Table 4. All κ= 3 Rules 

 
 

 

 

 



E. Templates 

Three templates are needed to program a CNN universal chip: the A template, the B template, 

and the z template (Figure 8). The A template is the feedback term of the CNN nonlinear 

differential equation. For simplicity and robustness, a00 is chosen to be 1, while the other 

cells of the templates are 0. In the linearly-separable cases, the B and z templates are 

obtained from the orientation vector [Chua et al, 2002] and [Dogaru & Chua, 1998], or 

normal vector, and the offset of the single separating plane respectively. These templates also 

convey the equation that describes the outputs of the corresponding truth table. Usually, the 

output equation is a signum function, sgn, involving analytical variables ui-1, ui, ui+1, since the 

CNN chip operates analytically. This signum function can be converted into a sign function, 

s, involving symbolic variables xi-1, xi, xi+1 in accordance to symbolic truth tables for better 

understanding. The signum and sign functions are presented in Figure 7. The separating 

plane and resulting B and z templates are shown in Figure 8 for Rule 204, which is linearly 

separable. 

 

 
 

Figure 7. y = sgn (x) and y = s(x), respectively. 

 



 
Figure 8. The Standard 1-D CA Templates and the derivation of the templates for Rule 204. 

 

Rules that have higher complexity indices are not linearly-separable, but they always can be 

decomposed into two or three linearly-separable Rules by Boolean Operations (AND , OR). 

These Rules are also known as linearly non-separable Rules. An example is Rule 184, which 

is equivalent to Rule 186 AND Rule 248 as presented by Figure 9. Table 5 provides a 

synthesis of all the higher complexity Rules. 

 

 
Figure 9. Rule 184 is Rule 186 AND Rule 248. 

 

 

 



Table 5.  Synthesis of Linearly Non-Separable Boolean Rules via Boolean Operation (AND, OR) using Linearly-Separable Rules 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



Table 5 (continued) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



 
Table 5 (continued) 

 
 

Therefore, instead of finding the templates for all 256 1-D CA Rules, it is sufficient to 

implement the templates of the 104 linearly-separable Rules to program the CNN universal 

chip. 



 
Figure 10. In order to program the CNN chip for Rule 184, the templates for Rules 186 and 248 are used. 

F. Optimal Templates 

Mathematically speaking, there are an infinite number of possible separating planes. Since 

the B and z templates are based on the normal vector and the offset of the separating plane, 

respectively, there are also an infinite number of possible templates per Boolean Rule. This is 

easily seen in the example of Rule 16, shown in Figure 11. 

 

 
Figure 11. Here are 3 possible separating planes for Rule 16. 

 

To provide a basis for studies concerning CNN universal chips and Boolean Rules, it is best 

to adhere to a standard set of templates. Among the infinite template possibilities, there is 

only one set of optimal CNN templates. In this paper, the optimal separating plane is defined 

as the plane that is at the maximum projected distance possible from each of the cube’s 8 



vertices, but which still separates the red vertices from the blue ones. The corresponding 

optimal CNN templates are derived from the normal vectors and offsets of these optimal 

separating planes. An algorithm to find this plane is provided in the Appendix. In short, a 

plane is selected that satisfactorily separates the red vertices from the blue. The projected 

distance from each vertex to the plane is found, and the minimum distance is maximized by 

adjusting the plane until an optimal plane is achieved. 

 

2 Gallery of Templates 

The optimal CNN templates of the 104 linearly-separable 1-D CA are implemented and 

presented in  table 6. The truth table, Cube, templates, and output formula are presented for each 

of the 104 Boolean Rules. The truth tables and output formula use symbolic variables xi-1, xi, xi+1 

for better understanding, but the templates are found based on analytic variables ui-1, ui, ui+1 since 

the CNN universal chip operates on a numerical analytical basis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 6.  A Gallery of Templates of all 104 Linearly Separable CA 
 

 





 















































 



3 Concluding Remarks 

After compiling a library of optimal CNN templates for linearly-separable 1-D CA, a next step 

would be to optimize the current library for 2-D CA. Interested readers may browse the 

Appendix to use the algorithm to implement the optimal CNN templates for linearly-separable 1-

D CA, and then move on to investigating 2-D CA. In the process of compiling the optimal CNN 

templates for linearly-separable 1-D CA, differences between the optimal CNN templates and 

those provided in [Chua, et al, 2002] may be noted. In particular, the templates for Rule 63 are 

incorrect, and should be revised as follows: [b1, b2, b3] should equal to [-1, -1, 0] instead of [0, -1, 

0]. To check the validity of the templates generated by the algorithm, the CANDY simulator was 

run and the dynamic firing patterns were compared. 
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Appendix 

In order to find the optimal separating plane, we use the concept of Support Vector Machines 

[Moore, 2007]. Often we are interested in classifying data. These data points may not necessarily 

be points in 2ℜ  but may be multidimensional nℜ  points. We are interested in whether we can 

separate them by a n-1 dimensional hyperplane. This is a typical form of linear classifier. There 

are many linear classifiers that might satisfy this property. However, we are additionally 

interested to find out if we can achieve maximum separation (margin) between the two classes. 

Now, if such a hyperplane exists, the hyperplane is clearly of interest and is known as the 

maximum-margin hyperplane. 

 
Figure 12.  Maximum-margin hyperplanes for a SVM trained with samples from two classes.  Samples along the 

hyperplanes are called support vectors 

Consider Figure 12. The goal is to separate the ”x”s from the “o”s3 using a hyperplane that is at 

maximum distance between the two classes.  We can consider the data points to be of the form: 

)},(,),,(),,{( 2211 nn cxcxcx K  

                                                 
3 In our case, the “x”s could be the red vertices and the “o”s could be the blue vertices.  We have thus colored the 
“x”s and “o”s that would give rise to the support vectors. 



Here the ic  is either 1 or -1.  This constant denotes the class to which point ix belongs to (for 

instance, if the point is an “x” then ic  is 1 and if the point is a “o” then ic  is -1).  Each ix  is a n-

dimensional real vector, usually of scaled [0,1] or [-1,1] values.  Now, the dividing hyperplane 

takes the form: 

0=−⋅ bxw  

The vector w  points perpendicular to the separating hyperplane.  Adding the offset parameter 

b allows us to increase the margin.  In its absence, the hyperplane is forced to pass through the 

origin, restricting the solution.  As we are interested in the maximum margin, we are interested in 

the support vectors and the parallel hyperplanes closest to these support vectors in either class, 

refer to Figure 12   It can be shown that these hyperplanes can be described by equations: 

1
,1
−=−⋅

=−⋅
bxw
bxw  

In our case, the points are linearly separable.  Therefore we can select the hyperplanes so that 

there are no points between them and then try to maximize their distance.  By using geometry, 

we find the distance between the hyperplanes is
||

2
w

, so we want to minimize || w .  To exclude 

data points, we need to ensure that for all i either: 

1
,1
−≤−⋅

≥−⋅
bxw

orbxw

i

i      
 

This can be rewritten as: 
(1)                        nibxwc ii ≤≤≥−⋅ 1,1)(  

 
The problem now is to minimize || w  subject to the constraint in (1).  That is: 
 

                    tosubject   | |  Minimize nibxwcw ii ≤≤≥−⋅ 1,1)(  
 
The equation above can be solved using a mathematical package.  We use the MATLAB toolbox 

from [Schwaighofer, 2002] (you need to have the Optimzation toolbox from Mathworks).  First 

download and unzip the toolbox from [Schwaighofer, 2002].  Here are MATLAB commands to 

find the normal vector and the offset of the optimal-separating plane for Rule 95.  The first line 

sets up the input vector, the second line the output vector corresponding to rule 95.  The last two 

lines use the SVM toolbox to obtain the normal vector w  and the offset b  for the optimal 

separating plane. 



>> U = [-1 -1 -1;-1 -1 1;-1 1 -1; ... 
-1 1 1;1 -1 -1;1 -1 1;1 1 -1;1 1 1]; 
>> Y95 = [1;1;1;1;1;-1;1;-1]; 
>> net_setup = svm(3,'linear',[],10); 
>> net95 = svmtrain(net_setup,U,Y95) 

 


