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A chaotic attractor has been observed with an autonomous circuit that uses only two energy-
storage elements: a linear passive inductor and a linear passive capacitor. The other element
is a nonlinear active memristor. Hence, the circuit has only three circuit elements in series.
We discuss this circuit topology, show several attractors and illustrate local activity via the
memristor’s DC vM − iM characteristic.
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1. Introduction

Our purpose here is to report that a chaotic attrac-
tor does exist for an autonomous circuit that has
only three circuit elements: a linear passive induc-
tor, a linear passive capacitor and a nonlinear active
memristor [Chua, 1971; Chua & Kang, 1976]. Before
our circuit was designed, the simplest chaotic cir-
cuit in terms of the number of circuit elements was
the Four-Element Chua’s circuit [Barboza & Chua,
2008]. Thus, not only does our circuit reduce the
number of circuit elements required for chaos by
one, it is also the simplest possible circuit in the
sense that we also have only one locally-active ele-
ment — the memristor. The definition of local activ-
ity [Chua, 2005] will be given later in this paper.
This system is also different from Chua’s circuit
because we have product terms as the nonlinear-
ity. Thus our system is more related to the Rossler
[Rossler, 1976] and Lorenz [Lorenz, 1963] systems.

Nevertheless, we will show later in this paper that
the memristor’s characteristics could be changed to
give rise to other chaotic systems.

This paper is organized as follows: we first
discuss circuit topology and equations. This is fol-
lowed by several plots of waveforms from the physi-
cal circuit that illustrate the period-doubling route
to chaos. We then numerically compute Lyapunov
exponents. Next, we plot the memristance function,
DC vM − iM characteristics of the memristor and
also show the pinched hystersis loop — the finger-
print of a memristor. The paper concludes with a
discussion of future work.

2. Circuit Topology and System
Equations

Consider the three-element circuit and the memris-
tor with characteristics1 shown in Fig. 1. The circuit

1The memristor’s internal state in Fig. 1 is given by x. This is not the same as x(t) in Eq. (1). The memristor state in Eq. (1)
is given by z(t).
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Fig. 1. The figure above shows a schematic of the proposed
circuit, the two defining equations for the memristor and a

plot of the memristance function R(x)
�
= β(x2 − 1). The

parameters are α = 0.6, β = 3/2, L = 3, C = 1. Note that our
memristor is a memristive device as defined in [Chua & Kang,
1976] and not the ideal memristor of [Chua, 1971]. We have
followed the associated reference convention for each device.
The region of negative memristance has also been contrasted
(red) with the region of positive memristance (blue).

dynamics are described by:

ẋ = y

ẏ = −
(

1
3

)
x +

(
1
2

)
y −

(
1
2

)
z2y

ż = −y − 0.6z + yz.

(1)

A plot of the attractor obtained by simulating
Eq. (1) (initial conditions: x(0) = 0.1, y(0) = 0,
z(0) = 0.1) is shown in Fig. 2.

In terms of the parameters in Fig. 1, Eq. (1)
becomes:

Fig. 2. The y(t) versus x(t) plot of the chaotic attractor
from Eq. (1).

ẋ =
y

C

ẏ =
−1
L

[x + β(z2 − 1)y]

ż = −y − αz + yz.

(2)

The parameter values are C = 1, L = 3, β = 3/2 =
1.5, α = 0.6. A derivation of Eq. (2) is given in
Appendix A. The state variables in terms of circuit
variables are x(t)

�
= vC(t) (voltage across capaci-

tor C), y(t)
�
= iL(t) (current through inductor L)

and z(t) is the internal state of our memristive sys-
tem, as defined in Fig. 1. Notice that we are using
the more general memristive system [Chua & Kang,
1976] model in Eq. (2), defined below:

vM = R(x)iM (3)

ẋ = f(x, iM ) (4)

where f(x, iM ) is the internal state function of the
memristor, R(x) is the memristance. The charac-
teristics of our memristor are described in Fig. 1.

It is easy to understand why we resorted to
the more general memristive system. From basic
circuit theory, it is not possible to have a single
loop circuit with three independent state variables if
we use the ideal charge-controlled 2 memristor. This
can be easily seen if we recall the definition of a
charge-controlled memristor [Chua, 1971] as:

vM = M(q)iM (5)

q̇ = iM . (6)

2Analagous arguments apply for a flux-controlled memristor.
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In a single loop circuit there is only one current
flowing through all elements by Kirchhoff’s Current
Law [Chua, 1969] and all the voltages are linearly-
related by Kirchhoff’s Voltage Law [Chua, 1969].
Hence the internal state of a charge-controlled mem-
ristor does not give rise to a third state variable.
Since the Poincare–Bendixson theorem implies that
we need three state variables for an autonomous

continuous-time system to be chaotic [Bendixson,
1901], we use the more general memristive system
as our third circuit element.

3. Results from the Physical Circuit

The physical circuit realization of our system is
shown in Appendix B, Fig. 11. Note from the

(a) (b)

(c)

Fig. 3. Plots of Period-One Limit Cycle: (a) Phase plot (iL(t) versus vC(t)); (b) Time domain waveforms (vC(t) is Channel 1,
iL(t) is Channel 3) and (c) Fast Fourier Transform of vC(t) from our circuit. The scales along the axes are: (a) 0.5 V/division
on each axis; (b) 1.00 V/division for Channels 1 and 3, 200 µs/division for the time axis; (c) 1.00 V/division for Channel 1,
200 µs/division for the time axis, 20.0 dB/division and a 25.0 kHz center frequency for the Fast Fourier Transform plot. β ≈ 1.2.
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schematic that our realization is not an analog
computer, where each component has an associ-
ated nonzero current and voltage whose product is
power. Also, due to restrictions imposed by compo-
nent values, the parameters in Eq. (2) correspond-
ing with the physical system are C = 1, L = 3.3,
β = 1.7, α = 0.2.

Figures 3–5 show results from the physical cir-
cuit. We have plotted state variable x(t) (vC(t),
voltage across the capacitor) on the x-axis and
y(t) (iL(t), current through the inductor) on the
y-axis. The figures illustrate period-doubling route
to chaos. The bifurcation parameter from Eq. (2)
is β.

(a) (b)

(c)

Fig. 4. Plots of Period-Two Limit Cycle: (a) Phase plot (iL(t) versus vC (t)); (b) Time domain waveforms (vC(t) is Channel 1,
iL(t) is Channel 3) and (c) Fast Fourier Transform of vC(t) from our circuit. The scales along the axes are: (a) 0.5 V/division
on each axis; (b) 1.00 V/division for Channels 1 and Channel 3, 100 µs/division for the time axis; (c) 1.00 V/division for
Channel 1, 200 µs/division for the time axis, 20.0 dB/division and a 25.0 kHz center frequency for the Fast Fourier Transform
plot. β ≈ 1.3.
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(a) (b)

(c)

Fig. 5. Plots of (a) Chaotic attractor (iL(t) versus vC(t)); (b) Time domain waveforms (vC(t) is Channel 1, iL(t) is
Channel 3) and (c) Fast Fourier Transform of vC(t) from our circuit. The scales along the axes are: (a) 0.5 V/division on each
axis; (b) 2.00 V/division for Channel 1, 1.00 V/division for Channel 3, 100 µs/division for the time axis; (c) 1.00 V/division for
Channel 1, 200 µs/division for the time axis, 20.0 dB/division and a 25.0 kHz center frequency for the Fast Fourier Transform
plot. β ≈ 1.7.

With β ≈ 1.2 we obtain Fig. 3. Both the phase
plot and the time domain waveforms indicate a peri-
odic limit-cycle. This is empirically confirmed by
the Fast Fourier Transform (FFT) from the scope,
the sharp peaks clearly show the harmonics.

Increasing β to approximately 1.3 gives us
Fig. 4. The period-doubling route to chaos can
be empirically confirmed by comparing Figs. 4(c)
to 3(c). The FFT in Fig. 4(c) shows a second sub-
set of harmonics as compared to Fig. 3(c).
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β ≈ 1.7 gives us chaos. Notice the wideband
nature of the spectra in Fig. 5(c).

3.1. Comparison between physical
and theoretical attractors

In Fig. 6, we plot two attractors that were measured
from the circuit and compare them to the results
from a Mathematica simulation.

4. Numerical Evidence of Chaos:
Lyapunov Exponents

Lyapunov exponents provide empirical evidence of
chaotic behavior. They characterize the rate of sep-
aration of infinitesimally close trajectories in state-
space [Eckmann & Ruelle, 1985; Wolf et al., 1985].
The rate of separation can be different for different
orientations of the initial separation vector, hence

Fig. 6. In this figure, we compare experimental versus theoretical attractors. The top two sets of attractor plots y(t) (iL(t),
current through the inductor) versus x(t) (vC(t), voltage across the capacitor). The axes scales for the experimental attractor
on the top-left are 0.5 V/division. Hence for the experimental attractor, the x(t) values range from −2.0V to 2.0 V. The
y(t) values range from −1.0 V to 1.5 V. For the theoretical attractor on the top-right, the x(t) values range from ≈ −2.75 to
≈ 1.0. The y(t) values for the theoretical attractor range from −1.0 to approximately 1.7. Hence, the x(t) values for the two
attractors are offset. This is because the origin (0,0) for the experimental attractor has been shifted to the right for clarity on
the oscilloscope. The bottom two sets of attractors plot z(t) (internal memristor state) versus x(t) (vC(t), voltage across the
capacitor). The axes scales for the experimental plot are 0.5 V/division for the horizontal and 1.00 V/division for the vertical
axes. For the theoretical plot, the x(t) values range from −2.5 to 1.0. The y(t) values range from approximately −3 to 0.5.
The bottom experimental attractor shows some distortion when z(t) is close to −3.0 V.
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Table 1. Comparison of Lyapunov exponents from
different methods.

β Value Time Series Method QR Method

1.2 0,−0.003,−0.429 0,−0.004,−0.433
1.3 0,−0.012,−0.418 0,−0.014,−0.424
1.7 0.029, 0,−0.47 0.035, 0,−0.48

the number of Lyapunov exponents is equal to the
number of dimensions in phase space. So for a three-
dimensional autonomous continuous time system,
we will have three Lyapunov exponents.

A positive Lyapunov exponent implies an
expanding direction in phase space. However, if the
sum of Lyapunov exponents is negative, then we
have contracting volumes in phase space. These two
seemingly contradictory properties are indications
of chaotic behavior in a dynamical system. If two
exponents are negative and the other exponent is
zero, this indicates that we have a limit cycle [Wolf,
1986]. The values of the Lyapunov exponents com-
puted using two different methods (the time-series
method [Govorukhin, 2008] and the QR method
[Siu, 2008]) are summarized in Table 1.

Notice that for β = 1.7, we have one positive
Lyapunov exponent and the sum of the Lyapunov
exponents is negative indicating chaotic behavior.

5. Memristor Characteristics

In this section, we illustrate several experimen-
tal and theoretical characteristics of the proposed
memristor.

5.1. Memristance function R(x)

Recall that the memristance function is defined as
R(x)

�
= β(x2 − 1). A plot of experimental and the-

oretical R(x) is shown in Fig. 7. We used β = 1.7.
Details on experimentally plotting the memristance
curve are given in Appendix C.

5.2. DC vM − iM characteristics

Figure 8 compares the experimental and theoretical
DC vM − iM characteristics of the memristor. We
have plotted several (iM , vM ) data points in a 100µs
interval from the physical circuit on the theoretical
vM − iM curve. Notice that most of the points lie in
the negative resistance or locally-active region. The
significance of negative resistance region and details
on experimentally obtaining this curve are given in
Appendix D.

5.3. Pinched hysteresis loop

Figure 9 shows two pinched hysteresis loops, one
at low frequency and the other at high frequency.

Fig. 7. Plots of experimental memristance (left) and theoretical memristance (right). For the experimental R(x), horizontal
axis scale is 0.5 V/division; vertical axis scale is 1.00 V/division. We plot x(t) on the horizontal, vM on the vertical. With a
1V division on the vertical scale, the experimental curve crosses the vertical axis at ≈ −1.8 V. The theoretical plot crosses
the vertical axis at −1.7. The horizontal axis crossing for the experimental curve is at −1V and approximately 0.9 V. For the
theoretical curve, it occurs at x = ±1.
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Fig. 8. Plots of experimental DC curve (left) and theoretical DC curve (right). Experimental plot axes scales are
0.2 V/division. The experimental oscilloscope picture has been offset for clarity, we have marked the axes in blue. vM is
on the vertical axis, iM on the horizontal axis. We have also plotted several experimental (iM , vM ) points from the chaotic
waveforms on the theoretical DC curve. Notice that most points lie in the locally-active region.

(a) (b)

Fig. 9. Memristor pinched hysteresis loop (Lissajous figures). (a) Pinched hysteresis loop, 3 kHz. (b) Pinched hysteresis loop,
35 kHz. Axes scales for (a) and (b) are 0.5 V/division for the x-axis and 1.00 V/division for the y-axis. Vertical axis is vM ,
horizontal axis is iM .

The test circuit for obtaining the pinched hyster-
sis loop is given in Fig. 14 in Appendix D (the
same circuit for obtaining the memristor’s DC vM −
iM characteristics). Notice that the pinched hys-
teresis loop in Fig. 9(a) degenerates into a linear
time-invariant resistor in Fig. 9(b) as we increase
the frequency. This indicates that the underly-
ing memristive system is BIBO (bounded-input

bounded-output) stable [Chua & Kang, 1976]. More
on this will be said in the conclusion.

6. Conclusions and Future Work

In this work, we reported the existence of an
autonomous chaotic circuit that utilizes only three
elements in series. We have shown attractors from
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Fig. 10. The simplest chaotic circuit with only three circuit elements in series — the inductor, capacitor and a memristor.
The memristor is the only active nonlinear device. It requires ±15 V DC power supplies (not shown for clarity). The other two
circuit elements — inductor and capacitor — are highlighted. We also plot the theoretical attractor and the chaotic attractor
obtained from the physical implementation.

this circuit along with an illustration of period-
doubling route to chaos. Figure 10 summarizes our
circuit. Note that the memristor plays two roles:
the third essential state variable and the essential
nonlinearity.

An interesting future direction would be to fur-
ther investigate the system from Eq. (2). If we
use the general definition of a memristive system
[Chua & Kang, 1976], Eq. (2) becomes:

ẋ =
y

C

ẏ =
−1
L

(x + R(z)y)

ż = f(z, y).

(7)

In Eq. (7), we are free to pick R(z) and f(z, y). This
paper has illustrated one particular choice. There
are other potential choices for R(z) and f(z, y).
One of our initial choices was R(z) = −z and

f(z, y) = f(y) = 1 − y2. This leads to:

ẋ =
y

C

ẏ =
−1
L

(x − zy) (8)

ż = 1 − y2.

We realized that the system above has already been
proposed in [Sprott, 1994]. If L = C = 1, Eq. (8)
is case A in [Sprott, 1994]. But with this choice of
R(z) and f(y), the associated memristive system
is not BIBO (bounded-input bounded-output) stable.
For a proof of BIBO instability, refer to Appendix E.
In other words, we cannot obtain a pinched hys-
teresis loop to characterize the memristor. Hence
imposing a practical constraint for the memristive
system to be BIBO stable, we could ask the ques-
tion: does there exist a three-element chaotic circuit
that is canonical [Chua, 1993] like Chua’s circuit?
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It would also be very useful if the BIBO stabil-
ity of our proposed memristive system is theoret-
ically investigated. Another avenue of investigation
is to improve the memristor emulator. Eliminating
the sensing resistor using the technique proposed
in [Persin & Di Ventra, 2009b] is a good topic for
future work.
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Appendix

A. Derivation of Circuit Equations

Recall that we have x(t)
�
= vC(t) (voltage across

capacitor C), y(t)
�
= iL(t) (current through induc-

tor L) and z(t) is defined as the internal state of
our memristive system. From the constitutive rela-
tion of a linear capacitor [Chua, 1969], we have the
following equation from Fig. 1:

dvC

dt
=

iL
C

(A.1)

Using our circuit variable to state variable map-
pings, we get our first state equation:

ẋ =
y

C
(A.2)

Applying Kirchhoff’s Voltage Law around the loop
[Chua, 1969] in Fig. 1 and simplifying using the
constitutive relations of the inductor, capacitor and
memristor, we get

vL + vC = vM

⇒ L
diL
dt

= −vC + vM

⇒ diL
dt

=
1
L

(−vC + vM )

=
1
L

(−vC + β(z2 − 1)iM )

=
1
L

(−vC + β(z2 − 1)(−iL))

⇒ diL
dt

=
−1
L

(vC + β(z2 − 1)iL) (A.3)

Hence in terms of state variables, we have obtained
our second state-equation:

ẏ =
−1
L

(x + R(z)y) (A.4)

Note that R(z)
�
= β(z2 − 1). Finally, we define the

differential equation governing the internal state of
our memristor to be:

ż
�
= −y − αz + yz (A.5)

B. Detailed Circuit Schematic

In this appendix we will derive the system equations
for the circuit shown in Fig. 11. In the circuit, we

have highlighted three energy storage elements in
color, to correspond to Fig. 1. Notice that the inter-
nal state of the memristor is thus stored in capacitor
Cf . The entire memristor analog emulator (enclosed
in a red box) is an active nonlinear element, pow-
ered by ±15V DC power supplies.

Throughout this appendix please refer to
Fig. 11 for part numbers and component labels. All
resistors used are standard 10% tolerance. Poten-
tiometers are standard linear type. A 5% tolerance
inductor is used along with 10% tolerance ceramic
disc capacitors. The AD633 multipliers are used
because of their wide bandwidth. The AD712 is
a low cost BiFET input op-amp. We also used a
4.7 nF power supply filter capacitor between ±15 V
and ground.

Note that we have used the standard passive
sign convention for all currents and voltages.

B.1. Realizing the first state
equation

Using the constitutive relationship of the capacitor
Cn we get:

dvC

dt
=

iL
Cn

(B.1)

B.2. Sensing the current

The concept behind realizing a memristor is to
first sense the current flowing through the circuit
by using sensing resistor Rs. In our case, we have
Rs = 100Ω connected to the difference amplifier
U3B. Hence, the output of U3B is:

vO =
Rs1

Rs2
100iM = 10000(−iL) = −IsiL (B.2)

Hence, we now have a current scaled by a factor of
Is and mapped into voltage vO. The significance of
this scaling factor will become apparent later in this
appendix.

B.3. Realizing memristor
function R(x)

Op-amp U3A and multipliers U4, U5 are used to
implement the memristance function R(x). Using
the datasheets of the multipliers [Analog, 2010] and
the connections shown in the schematic, we can
see that the output of multiplier U5 is −x2vO. We
use the resistive divider (resistors R1, R10 kpot, R1 2,
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Fig. 11. Schematic of the three-element memristor-based chaotic circuit. Note that in the appendix, we have used Cn and
Ln instead of C and L respectively. This notation distinguishes realistic capacitor and inductor values from the theoretical
numbers.

R10 kpot 2) between pins W and Z in the two multi-
pliers to cancel the multiplier internal scaling factor
of 10. Op-amp U3A is an inverting summing ampli-
fier. The output vM is given by:

vM = −β5 kpot

R6
vO − β5 kpot

R5
(−x2vO) (B.3)

Since we have chosen R5 = R6 = R = 1k and β5 kpot

is a 5 kΩ potentiometer, β
�
= β5 kpot/R. Substitut-

ing for vO from Eq. (B.2), vM in Eq. (B.3) can be
simplified as:

vM (t) = β(IsiL) + βx2(−IsiL) (B.4)

Upon further simplification, we get:

vM (t) = −βIs(x2 − 1)iL (B.5)

B.4. Realizing the second state
equation

Applying Kirchhoff’s Voltage Law around the loop
with Rs and the memristor, we get:

vL + vC = vS + vM (B.6)

Simplifying the equation above, we get:

Ln
diL
dt

= −vC + vM − RsiL (B.7)

Substituting for vM (t) from Eq. (B.5) we get:

diL
dt

=
−1
Ln

(vC + βIs(x2 − 1)iL + RsiL) (B.8)

B.5. Realizing the third state
equation

Op-amps U2B and U2A realize the differential equa-
tion for the internal state x(t) of the memristor. The
output x of op-amp U2B is given by:

− Cf
dx

dt
= −vO

Rb
+

x

α10 kpot
+

xvO

Ra

⇒ dx

dt
=

vO

RbCf
− x

α10 kpotCf
− xvO

RaCf
(B.9)

Substituting for vO from Eq. (B.2), we get:

dx

dt
= − IsiL

RbCf
− x

α10 kpotCf
+

xIsiL
RaCf

(B.10)
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B.6. Transforming circuit
equations to system equations

Note that the boxed equations above are the phys-
ically scaled versions of Eq. (2). To see this, let us
first define the transformations:

x(τ) = vC(t)

y(τ) = IsiL(t)

z(τ) = x(t)

(B.11)

Note that we have mapped the internal memristor
state (x(t), voltage across capacitor Cf in Fig. 11) to

z(τ). We also include time scaling: τ
�
= Tst = 105t.

Recall Is
�
= 10000. Hence, we see that our circuit

scales the current state variable (y(t)) from our sys-
tem to hundreds of microamps and the time scale
to tens of microseconds. This results in realizable
values of inductors and capacitors.

Substituting Eq. (B.11) and the time scaling
into Eqs. (B.1), (B.8) and (B.10) we get after sim-
plifying:

dx

dτ
=

y

C

dy

dτ
=

−1
L

(
x + β(z2 − 1)y +

Rs

Is
y

)

dz

dτ
= − y

TsRbCf
− αz +

yz

TsRaCf

(B.12)

Notice that since Rs = 100Ω, Rb = Ra = 1 kΩ,
Cf = 10 nF, Is = 10000 and Ts = 105, we can sim-
plify Eq. (B.12) to the following.

dx

dτ
=

y

C

dy

dτ
=

−1
L

(x + β(z2 − 1)y + 0.01y)

dz

dτ
= −y − αz + yz

(B.13)

The values of the parameters in Eq. (B.13) can be
obtained from the circuit component values:

C = IsCnTs

L =
LnTs

Is

β =
β5 kpot

R

α =
1

TsCfα10 kpot

(B.14)

Using the component values from the circuit, we
get the following values for the parameters in
Eq. (B.13): C = 1, L = 3.3, β = 1.7 and α = 0.2.

Note that in order to measure the voltage across
the capacitor using the oscilloscope, we need to
design another difference amplifier just like op-amp
U3B in Fig. 11. But for this amplifier, all resistors
were set to 1MΩ.

Notice that in Eq. (B.13), we have the 0.01y
term due to the sensing resistor. Although very
small, it would be useful to eliminate this resistor.
A potential realization that removes this term is
suggested as future work in the conclusion.

C. Experimentally Obtaining R(x)

In order to obtain R(x), we first set vO equal to
1 V in Fig. 11. Since v0 = 1, the vM = R(x). Next,
we use a 1 kHz 1V peak-to-peak triangle-wave as
input to x. We then plot vM versus x(t) to obtain
the experimental memristance curve.

D. The DC vM − iM Curve for the
Memristor

We will first mathematically derive the DC vM −iM
curve for the memristor. Consider the memristor
circuit symbol below, reproduced from Fig. 1. Note
that the parameters corresponding to the physical
realization are α = 0.2, β = 1.7.

To derive the DC characteristic, we first set ẋ
equal to zero in the memristor state equation since
by definition, at DC all derivatives are zero. We
then solve for the internal state of the memristor in
terms of current. We get:

−αx + (1 − x)iM = 0

⇒ x =
iM

iM + α
(D.1)

We now eliminate x in the memristor output equa-
tion using Eq. (D.1):

vM (t) = β(x2 − 1)iM (D.2)

Fig. 12. The memristor used in our circuit, with α =
0.6, β = 1.5.
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Thus, the DC vM − iM function of the memristor is
given by:

vM (t) = −iM

(
−1 +

i2M
(iM + α)2

)
β (D.3)

A plot of the function in Eq. (D.3) is shown in
Fig. 13, with the locally-active region highlighted.

The significance of local activity is that this
region of negative resistance is essential for chaos
[Chua, 2005]. In other words, we need at least
one locally-active element for chaos [Chua, 2005].
Our memristor is locally-active as well as nonlin-
ear, hence we can make the other two elements
(the inductor and capacitor) in our circuit linear
and passive. Thus, when our system is chaotic, the
current through and the voltage across the mem-
ristor will mostly be in the locally-active region
of Fig. 13. This fact is also highlighted in Fig. 8.
We have superimposed a few (iM , vM ) measure-
ments from the actual circuit on the memristor DC
vM − iM curve. We can see that most of the points
do indeed lie in the locally-active region.

In order to plot the experimental DC charac-
teristic in Fig. 8, we used the test circuit shown in
Fig. 14.3 The current source iS(t) was configured
to be approximately 10 mA amplitude sine-wave, at

Fig. 13. The theoretical memristor DC vM − iM curve. We
have highlighted the locally-active region in red.

Fig. 14. A test circuit we used for plotting the memristor
DC vM − iM characteristic and the pinched-hysteresis loops.

a frequency of 0.5 Hz. We placed the oscilloscope
into “persistence-mode” so that we could record the
points. We then plotted vM versus this input cur-
rent on the oscilloscope.

Note that in order to plot the pinched hys-
teresis loop, we simply increased the frequency
of the sinusoidal waveform to obtain Figs. 9(a)
and 9(b).

E. BIBO Instability of Sprott’s
Memristive System

Consider the system in Eq. (8), repeated below for
convenience:

dx

dt
=

y

C

dy

dt
=

−1
L

(x − zy)

dz

dt
= 1 − y2

(E.1)

In Eq. (E.1), we will be concerned with the behav-
ior of the memristor for a bounded input. Suppose
y(t) = sin(ωt). Substituting this function into the
dz/dt equation in Eq. (E.1), we get:

dz

dt
= 1 − sin2(ωt) (E.2)

The equation above is separable so it can be easily
integrated (assuming zero initial conditions) using
basic calculus to find z(t):

z(t) =
t

2
+

sin(2ωt)
4ω

(E.3)

Notice the presence of the linear t/2 function on the
right-hand side that implies the internal state z(t)
of the memristor is unbounded. Hence our system
is BIBO unstable.

3The current waveform generator is a voltage waveform generator in series with a large resistance of 100 kΩ. By Norton’s
theorem, we thus have a current source [Chua, 1969]. We thus have a current source in parallel with a 100 kΩ resistor that
draws a negligible amount of current.
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