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Abstract—Ever since its physical fabrication in 2008,

the memristor has shown promise in the fields of nano-

electronics, computer logic and neuromorphic computers.

Taking advantage of the circuit properties of the memristor,

this paper proposes memristor based chaotic circuits. For

the first time, memristor based chaotic circuits have been

derived from the canonical Chua’s circuit. These circuits

present opportunities for developing applications under the

constraints of scalability and low power. They also provide

a memristor based framework for secure communications

with chaos.

Index Terms—nonlinear dynamics, chaos, memristor,

chaotic circuit, Chua’s circuit, Lyapunov exponents

I. Introduction

The memristor was postulated as the fourth circuit el-

ement by Leon O. Chua in 1971 [1]. It thus took its

place along side the rest of the more familiar circuit

elements such as the resistor, capacitor, and inductor. The

common thread that binds these four elements together

1Author for correspondance. Also affiliated with the Nonlinear
Electronics Laboratory, University of California, Berkeley

as the four basic elements of circuit theory is the fact

that the characteristics of these elements relate the four

variables in electrical engineering (voltage, current, flux

and charge) intimately. Fig. 1 shows this relationship

graphically [2]. The memristor is a two terminal element,

Fig. 1. The Four Basic Circuit Elements [2]
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in which the magnetic flux (φ) between the terminals

is a function of the electric charge that passes through

the device [2]. The memristor M used in this paper is

a flux controlled memristor that is characterized by its

incremental menductance [2] function W (φ) describing

the flux-dependent rate of change of charge:

W (φ) =
dq(φ)

dφ
(1)

The relationship between the voltage across (v(t)) and

the current through (i(t)) the memristor is thus given by:

i(t) = W (φ(t))v(t) (2)

Memristor is an acronym for memory-resistor because

in Eq. 2, since W (φ(t)) = W (
∫
v(t)), the integral

operator on the menductance function means the function

remembers the past history of voltage values. Of course,

if W (φ(t)) = W (
∫
v(t)) = constant, a memristor is

simply a resistor. For over thirty years, the memristor

was not significant in circuit theory. In 2008, Williams

et. al. [2] fabricated a solid state implementation of

the memristor and thereby cemented its place as the

4th circuit element. They used two titanium dioxide

films, with varying resistance which is dependent on how

much charge has been passed through it in a particular

direction. As a result of this realization, it is possible to

have nonvolatile memory on a nano scale.

Until recently, electrical and electronics theory have

been focusing on linear elements. However, the works of

Chua et. al. have brought the study of nonlinear electron-

ics to the forefront, proving that study of nonlinearity can

hold very promising applications especially in the area

of secure communications [3]. High frequency chaotic

oscillators have immense potential for applications in

secure communication [4]. One possibility for obtaining

high frequency chaotic circuits is to use nano-scale

devices [5], like the memristor.

One of the first memristor based chaotic circuits

have been proposed by Itoh and Chua [6]. However,

their paper uses a passive nonlinearity based on the

memristor characteristics obtained by Williams et. al..

Hence, their circuits are not suitable for secure com-

munications because active nonlinearities are essential

for high signal-to-noise ratio (SNR) [7]. The canonical

Chua’s circuit uses an active nonlinearity for obtaining

chaos, and hence it has found a variety of applications

ever since inception in 1984 in secure communications

[8]. Therefore, a natural question to ask is: can we obtain

a memristor based chaotic circuit from the classical

Chua’s circuit? This paper answers yes to the question

posed above. We obtain a memristor based chaotic

circuit by simply increasing the dimensionality of the

canonical Chua’s circuit. We define simply increasing

as adding a memristor with the same nonlinearity as

the canonical Chua’s circuit. This circuit is the subject

of section II. In section III, we simplify the canonical

memristor based chaotic circuit by removing one of

the elements a’la Barboza and Chua [9]. We derive

the menductance nonlinearity by using the constraint of

hyperbolic equilibrium points (condition 1 of Shilnikov’s

Theorem [10]). Then in Section IV, we notice that unlike

Barboza and Chua’s three dimensional chaotic circuit,

we can eliminate one of the negative elements in the

four dimensional memristor based chaotic circuit and

still obtain chaos. In Section V, Lyapunov exponents are

computed for all three circuits, this provides empirical

evidence of chaos. We use two different methods to

compute the Lyapunov exponents for consistency checks.

Section VI illustrates how we can easily extend the

canonical memristor based chaotic circuit to higher di-

mensions and explains why this is important to secure

communications. The paper concludes with a summary
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TABLE 1
IN ORDER TO OBTAIN THE MEMRISTOR-BASED CHAOTIC CIRCUIT, WE REPLACED THE NONLINEAR RESISTOR IN CHUA’S CIRCUIT WITH A

MEMRISTOR.

of the key points and discusses future work.

II. Canonical Memristor based chaotic

circuit

As stated in the introduction section, our first cir-

cuit dimensionally extends the canonical Chua’s circuit.

Refering to Table 1, we derived the memristor-based

chaotic circuit by simply replacing the nonlinear resistor

in Chua’s circuit with a flux-controlled memristor. Below

are the equations governing our memristor-based chaotic

circuit:

dφ

dt
= v1(t)

dv1(t)

dt
=

1

C1

(
v2(t)− v1(t)

R
−W (φ(t)) · v1(t)

)
dv2(t)

dt
=

1

C2

(
v1(t)− v2(t)

R
− iL(t)

)
(3)

diL(t)

dt
=

v2(t)

L

The intuitive justification for dimensional extension is

that an active nonlinearity is very important for ob-

taining a chaotic circuit. The dimensional extension

not only preserves the active nonlinearity, it also in-

troduces another nonlinearity in terms of the product

(W (φ(t))v1(t)) in the equation above. These two non-

linearities should combine to give rise to chaos, as

we observed. The Q(φ) function is obtained from the

canonical Chua’s circuit:

Q(φ) = −0.5 · 10−3 · φ+
−0.8 · 10−3 + 0.5 · 10−3

2

· (|(φ+ 1)| − |(φ− 1)|) (4)

The menductance function that is obtained from the
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TABLE 2
ATTRACTORS FROM THE STATE-SCALED CANONICAL MEMRISTOR-BASED CIRCUIT

Q(φ) function is:

W (φ) =
dqm(φ)

dφ
=



−0.5 · 10−3 φ ≤ −1

−0.8 · 10−3 −1 < φ < 1

−0.5 · 10−3 φ ≥ 1

(5)

Choosing the parameters as C1 = 5.5nF, C2 =

49.5nF, L = 7.07mH, R = 1428Ω and setting the

initial conditions to φ(0) = 0, v1(0) = 0, v2(0) =

0, i(0) = 0.1 we can see that this dimensionally
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extended circuit indeed generates chaotic behaviour.

Appendix A has the simulation code. The simulation

results in values for the states that are far beyond what is

physically realizable. The system states can be rescaled

to the appropriate (constrainted) values for v1(t) and

v2(t). Refer to Appendix B for the rescaled system

equations. Table 2 shows the attractors obtained from

the rescaled canonical memristor-based chaotic circuit.

In the next section, we try to answer the question of

whether we can reduce the number of elements in this

circuit and still obtain chaos. Fewer elements in a circuit

mean a more compact form for implementation on an

integrated circuit. Since one of the greatest advantages

of a memristor is a reduction in space (since the device

functions at the nanoscale level), it is desirable to exploit

this property.

III. Four Element Memristor based

chaotic circuit

We simplified the circuit from the previous section a’la

Barboza and Chua’s four-element chaotic circuit. This

circuit is significant since it is the simplest possible

circuit in terms of the number of elements and it also

displays bifurcation phenomenon not seen in the canon-

ical Chua’s circuit. Fig. 2 and Fig. 3 shows the four

Element Chua’s circuit and its realization respectively.

Fig. 4 shows our version of the four-element Chua’s

circuit in which the nonlinear resistor is replaced by

the memristor. Fig. 5 shows this circuit reduced down

to the basic circuit elements. In order to choose the

menductance for the memristor M in Fig. 5 we used the

hyperbolic equilibrium point constraint from Shilnikov’s

theorem [10]. The resulting function is shown in Fig. 6.

The system equations for Fig. 5 are:

Fig. 2. The simplest Chua’s circuit and its typical attractor [9]

dφ

dt
= v1

i−W (φ)v1 = C1
dv1
dt

(6)

κL1
di

dt
= v1 − v2

i =
C2

κ

dv2
dt

The parameters for (6) are: C1 = 33 nF , C2 = 100 nF ,

L1 = 10 mH and κ = 8.33. In (6), we are free to

pick W (φ). Using MATLAB, we get the results shown

in Fig. 7 and Fig. 8. Appendix C has the MATLAB

code used to obtain these results. One surprising result

we obtained from this circuit is the fact that it can be

Fig. 3. A realization of the four-element Chua’s circuit [9]
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Fig. 4. Four-element memristor-based chaotic circuit

Fig. 5. Four-element memristor-based chaotic circuit showing only
the basic circuit elements. The effect of op-amp A1 from Fig. 4 is the
set −κ.

simplified even further. The next section describes how

this may be possible and suggests how the simplification

may be advantageous.

IV. Four Element Memristor based

chaotic circuit with one negative element

Fig. 6. Memristance function W (φ) as defined in Mathematica.

Fig. 7. 3D attractor from the four-element memristor-based chaotic
circuit.

Unlike Barboza and Chua’s four element chaotic circuit,

we discovered that our circuit requires only one negative

element. Hence, we can simplify the circuit from the

previous section even further. Specifically, in the circuit

shown in Fig. 5, if we let C2 be the only negative element
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Fig. 8. 2D Projections of the attractor from the four-element memristor-based chaotic circuit.

and set κ to 1, we still get chaotic behaviour. System

equations are:

dφ

dt
= v1

i−W (φ)v1 = C1
dv1
dt

(7)

κL1
di

dt
= v1 − v2

i =
−C2

κ

dv2
dt

The other parameters, initial conditions and the men-

ductance function (W (φ)) are the same as the previous

section. The simulation results are shown in Fig. 9 and

Fig. 10, MATLAB simulation code is given in Appendix

D. Having a single negative element is advantageous be-

cause we have reduced the number of active elements in

the circuit. This leads to a reduction in power consump-

tion. Although the above circuit and the two circuit(s)

from the previous section(s) seem to exhibit chaotic

attractors via simulation, a strong empirical indicator of

chaos are Lyapunov exponents [10]. Lyapunov exponents

characterize the rate of separation of infinitesimally close

trajectories in state-space [10]. The rate of separation

can be different for different orientations of the initial
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Fig. 10. 2D Projections of the attractor from the four-element memristor-based chaotic circuit with only one negative element.

Fig. 9. 3D attractor from the four-element memristor-based chaotic
circuit with only one negative element.

separation vector, hence the number of Lyapunov ex-

ponents is equal to the number of dimensions in phase

space. If we have a positive Lyapunov exponent, that

means we have an expanding direction. However, if the

sum of the Lyapunov exponents is negative, that means

we have contracting volumes in phase space. These

two seemingly contradicting properties of the Lyapunov

exponents are indications of chaotic behaviour in the

dynamical system. Lyapunov exponents for our three

systems are computed in the next section.

V. Lyapunov exponent calculations

Before computing the Lyapunov exponents, the time

scales for the circuits are scaled to the order of sec-

onds by: τ = t√
|L1C2|

. This is necessary because the

Lyapunov exponent algorithms numerically converge for

these time scales. At lower time scales, we need really

small step sizes for the ode solvers. This causes huge

round-off errors.

As mentioned earlier, we use two independent meth-
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TABLE 3
SUMMARY OF LYAPUNOV EXPONENTS

Circuit QR Method Time Series Method
canonical memristor-based chaotic circuit 0.085, 0, -0.0003, -0.668 0.086,0,0.0005,-0.672
four-element memristor-based chaotic circuit 0.11, 0, 0, -1.16 0.1, 0, 0, -1.2
four-element memristor-based chaotic circuit with only negative C2 0.1, 0, 0, -0.7 0.1, 0, 0, -0.7

ods to estimate the Lyapunov exponents: the QR method

from [11] and the time-series method from [12]. The

LET toolbox from [13] and the Lyapunov time series

toolbox from [14] have been used to estimate the ex-

ponents. Table 3 summarizes our results. Appendix E

has the MATLAB code used for obtaining the values in

Table 3. Let us analyze each row in the Table 3.

1) For the canonical memristor based chaotic circuit

, we notice that we have four Lyapunov expo-

nents. This alludes to the possibility of hyper-

chaos. However, in the circuit presented in this

paper, hyperchaos seems to be absent. Although

the time series method indicates a second positive

Lyapunov exponent of 0.0005, this is probably

numerical error and this Lyapunov exponent may

tend towards zero as t→∞.

2) The four-element Chua’s circuit with a memristor

has one positive Lyapunov exponent, indicating the

presence of chaos [14].

3) The four-element circuit with only a negative ca-

pacitance also gives to rise to chaotic behaviour

because of the positive Lyapunov exponent [14].

However, Barboza and Chua’s four-element circuit

without the memristor does not seem to have

chaotic behavior for the same set of C1, L1, C2

and κ values. No matter what NR function we

choose for the Barboza circuit, we do not seem to

get hyperbolic saddle equilibria if we have only

one negative element. This difference between the

Barboza-Chua circuit and the memristor circuit

warrants further study.

Also note that the sum of the Lyapunov exponents is

negative for all the circuits. This implies that volumes

contract in phase space, however the positive Lyapunov

exponent indicates an expanding trajectory. This im-

plies that trajectories eventually converge to a fractal

structure, namely, the chaotic attractor. The penultimate

section in this paper suggests a possible application of

the memristor based chaotic circuits to secure com-

munication. We present a five-dimensional memristor

based chaotic circuit that is obtained from the canonical

four-dimensional memristor based chaotic circuit by the

addition of an inductor and suggest why these circuits

may hold promise for secure communication.

VI. Dimensionally extending canonical

Memristor based chaotic circuit and

application to secure communications

Fig. 11 shows that if we add inductor L1 (highlighted in

red) to the canonical memristor based chaotic circuit and

set its value to 180 mH we still obtain chaos (all the other

parameters, nonlinearity and initial conditions remain the

same). The equations describing the five dimensional

circuit are:

dφ

dt
= v1(t)

dv1(t)

dt
=

1

C1
(iL1 −W (φ) · v1)

dv2(t)

dt
=

1

C2
(−iL1 − iL2) (8)
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Fig. 11. Note that the addition of the inductor L1 results in a five dimensional circuit. We can obtain chaos for an inductor value of 180 mH.

Fig. 12. Attractors obtained from the five dimensional circuit. Note that state scaling has already been incorporated.
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diL1(t)

dt
=

1

L1
(v2 − v1 − iL1 ·R)

diL2(t)

dt
=

v2
L2

Fig. 12 shows the attractors obtained from the rescaled

canonical memristor-based chaotic circuit. Note that

MATLAB simulation code for the circuit above has

not been given since the MATLAB code can be easily

extrapolated from the other appendices. The Lyapunov

exponents that were computed for the circuit above are

0,0.22,0,-2.99,-3.05 (from LET toolbox) and 0,0.22,0,-

3.38,-1.85 (from the time-series method). There is close

agreement between the two methods. We also have

one positive Lyapunov exponent and the sum of the

exponents is negative. Hence, there is empirical evidence

of chaos.

The point to note here is the ease of extending the

four-dimensional system to a higher dimension. We

simply added another element to the circuit and just

had to tune its value. Moreover, as pointed out in

literature [15], higher dimensional systems are suitable

for secure communication because their attractors do

not have an easily identifiable structure unlike lower

dimensional chaotic systems. This directs the attention

of secure communication to higher-dimensional systems

[16], [17]. Hence, an interesting question that warrants

further study is whether even higher dimensional (6th

order, 7th order,...) circuits can be obtained from this

five dimensional circuit.

VII. Conclusions

This paper has discussed three possible memristor-based

chaotic circuits and presented a possible fourth candi-

date. Specifically, we have discovered:

1) There exists a memristor based chaotic circuit that

can be obtained from the canonical Chua’s circuit

by simple ”dimension extension”’.

2) There exists a simplification of the memristor

based chaotic circuit from (1) above that has only

four elements (we eliminated the resistor a’la

Barboza and Chua).

3) We can simplify the four element memristor based

chaotic circuit to use only one negative element.

4) We can extend the four dimensional memristor

based chaotic circuit to five dimensions. This

increase in dimensionality has implications for

designing better secure communication systems.

These circuits warrant a plethora of future research, a

few selected topics are:

1) Determining the route to chaos (period doubling

etc.) in these circuits.

2) Proving the circuits are chaotic rigorously by way

of topological horseshoe theory.

3) A framework for implementing memristor-based

chaotic circuits.

4) Exploring the possibility of hyperchaos [18], [19],

[20] in these circuits.

5) Mathematically explaining the dimensional exten-

sion exhibited by these systems.

6) Studying applications to secure communications.
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APPENDIX A
MATLAB SIMULATION CODE FOR CANONICAL

MEMRISTOR BASED CHAOTIC CIRCUIT

The file below is called Canonical.m. The correspond-
ing W.m is shown after Canonical.m
%% Memristor based chaotic Chua’s circuit simulation
%% Bharathwaj Muthuswamy,
%% Pracheta Kokate
%% June 13th 2008 - July 13th 2008,
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%% June 2009
%% mbharat@cory.eecs.berkeley.edu
%% Ref: Stephen Lynch,
%% Dynamical Systems with Applications
%% using MATLAB
clear;
%% MAKE SURE YOU PUT CODE BELOW ON A
%% SINGLE LINE!
dmemristor=inline(’[y(2);1/5.5e-9*
((y(3)-y(2))/1428
- W(y)*y(2));1/49.5e-9*((y(2)-y(3))/1428
- y(4)); y(3)/7.07e-3]’,’t’,’y’);

options = odeset(’RelTol’,1e-7,’AbsTol’,
1e-7);
[t,ya]=ode45(dmemristor,[0 10e-3],
[0,0,0,0.1],options);

plot(ya(:,2),ya(:,4));
title(’Memristor Attractor: 2D Projection,
i vs. v1’)

fsize=15;
xlabel(’v1(t)’,’Fontsize’,fsize);
ylabel(’i(t)’,’Fontsize’,fsize);
figure
plot(ya(:,2),ya(:,3))
title(’Memristor Attractor: 2D Projection,
v2 vs. v1’)

xlabel(’v1(t)’,’Fontsize’,fsize);
ylabel(’v2(t)’,’Fontsize’,fsize);
figure
plot(ya(:,2),ya(:,1))
title(’Memristor Attractor: 2D Projection,
phi vs. v1’)
xlabel(’v1(t)’,’Fontsize’,fsize);
ylabel(’phi(t)’,’Fontsize’,fsize);
figure
plot(ya(:,3),ya(:,1))
title(’Memristor Attractor: 2D Projection,
phi vs. v2’)
xlabel(’v2(t)’,’Fontsize’,fsize);
ylabel(’phi(t)’,’Fontsize’,fsize);

figure
plot(ya(:,4),ya(:,1))
title(’Memristor Attractor: 2D Projection,
phi vs. i’)
xlabel(’i(t)’,’Fontsize’,fsize);
ylabel(’phi(t)’,’Fontsize’,fsize);

figure
plot(ya(:,3),ya(:,4))
title(’Memristor Attractor: 2D Projection,
i vs. v2’)
xlabel(’v2(t)’,’Fontsize’,fsize);
ylabel(’i(t)’,’Fontsize’,fsize);

figure
plot(t,ya(:,2))
hold
plot(t,ya(:,4),’r’)
title(’Memristor chaotic time series:
v1 (blue) and v2 (red)’)

figure
plot(t,ya(:,1))
hold
plot(t,ya(:,3),’r’)
title(’Memristor chaotic time series:
w (blue) and i (red)’)
%% 3d plot: flux, current and voltage
figure
plot3(ya(:,1),ya(:,2),ya(:,3));
grid on
xlabel(’w(t)’,’Fontsize’,fsize);
ylabel(’v1(t)’,’Fontsize’,fsize);
zlabel(’i(t)’,’Fontsize’,fsize);
title(’Memristor 3D attractor’);

%% Menductance function W.m
function r = W(y)

if(y(1) <= -1)
r = -0.5e-3;

elseif((y(1) > -1) && (y(1) < 1))
r = -0.8e-3;

else
r = -0.5e-3;

end

APPENDIX B
MATLAB SIMULATION CODE FOR RESCALED

CANONICAL MEMRISTOR BASED CHAOTIC CIRCUIT

Use the same W.m as the previous appendix.
%% Memristor based chaotic Chua’s circuit
%% simulation
%% Bharathwaj Muthuswamy, Pracheta Kokate
%% June 13th 2008 - July 13th 2008,
%% June 2009
%% mbharat@cory.eecs.berkeley.edu
%% Ref: Stephen Lynch,
%% Dynamical Systems with Applications
%% using MATLAB
clear;
%% MAKE SURE YOU PUT CODE BELOW ON A SINGLE LINE!
dmemristor=inline(’[y(2); 1/5.5e-9*((y(3)-y(2))/1428-
W(y)*y(2)); 1/49.5e-9*((y(2)-y(3))/1428 -
y(4)); y(3)/7.07e-3]’,’t’,’y’);

options = odeset(’RelTol’,1e-7,’AbsTol’,1e-7);
[t,ya]=ode45(dmemristor,[0 10e-3],[0,0,0,0.1],options);
ya(:,1) = ya(:,1);
ya(:,2) = ya(:,2)./10000;
ya(:,3) = ya(:,3)./5000;
ya(:,4) = ya(:,4)./500;

plot(ya(:,2),ya(:,4));
title(’Memristor Attractor: 2D Projection, i vs. v1’)
fsize=15;
xlabel(’v1(t)’,’Fontsize’,fsize);
ylabel(’i(t)’,’Fontsize’,fsize);
figure
plot(ya(:,2),ya(:,3))
title(’Memristor Attractor: 2D Projection, v2 vs. v1’)
xlabel(’v1(t)’,’Fontsize’,fsize);
ylabel(’v2(t)’,’Fontsize’,fsize);
figure
plot(ya(:,2),ya(:,1))
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title(’Memristor Attractor: 2D Projection,
phi vs. v1’)

xlabel(’v1(t)’,’Fontsize’,fsize);
ylabel(’phi(t)’,’Fontsize’,fsize);
figure
plot(ya(:,3),ya(:,1))
title(’Memristor Attractor: 2D Projection,
phi vs. v2’)
xlabel(’v2(t)’,’Fontsize’,fsize);
ylabel(’phi(t)’,’Fontsize’,fsize);

figure
plot(ya(:,4),ya(:,1))
title(’Memristor Attractor: 2D Projection,
phi vs. i’)

xlabel(’i(t)’,’Fontsize’,fsize);
ylabel(’phi(t)’,’Fontsize’,fsize);

figure
plot(ya(:,3),ya(:,4))
title(’Memristor Attractor: 2D Projection,
i vs. v2’)

xlabel(’v2(t)’,’Fontsize’,fsize);
ylabel(’i(t)’,’Fontsize’,fsize);

figure
plot(t,ya(:,2))
hold
plot(t,ya(:,4),’r’)
title(’Memristor chaotic time series:
v1 (blue) and v2 (red)’)
figure
plot(t,ya(:,1))
hold
plot(t,ya(:,3),’r’)
title(’Memristor chaotic time series:
w (blue) and i (red)’)

%% 3d plot: flux, current and voltage
figure
plot3(ya(:,1),ya(:,2),ya(:,3));
grid on
xlabel(’w(t)’,’Fontsize’,fsize);
ylabel(’v1(t)’,’Fontsize’,fsize);
zlabel(’i(t)’,’Fontsize’,fsize);
title(’Memristor 3D attractor’);

APPENDIX C
MATLAB SIMULATION CODE FOR FOUR ELEMENT

MEMRISTOR BASED CHAOTIC CIRCUIT

There are two files: the ode solver (memristorAu-
dio.m) and the memristance function (W.m). Shown
below is memristorAudio.m:
%% Memristor based chaotic Chua’s circuit
%% simulation
%% Bharathwaj Muthusway,
%% Pracheta Kokate
%% June 13th 2008 - July 13th 2008,
%% June 2009
%% mbharat@cory.eecs.berkeley.edu
%% Ref: Stephen Lynch,
%% Dynamical Systems with Applications
%% using MATLAB

clear;
%% MAKE SURE YOU PUT CODE BELOW ON A
%% SINGLE LINE!
dmemristor=inline(’[y(2);(y(3)-
W(y)*y(2))/33e-9;
(y(2)-y(4))/(8.33*10e-3);
y(3)*(8.33/100e-9)]’,’t’,’y’);
options = odeset(’RelTol’,1e-7,
’AbsTol’,1e-7);
[t,ya]=ode45(dmemristor,[0 100e-3],
[0,0.1,0,0],options);
plot(ya(:,2),ya(:,4))
title(’Memristor Attractor: 2D Projection,
v2 vs. v1’)
fsize=15;
xlabel(’v1(t)’,’Fontsize’,fsize);
ylabel(’v2(t)’,’Fontsize’,fsize);
figure
plot(ya(:,2),ya(:,3))
title(’Memristor Attractor: 2D Projection,
i vs. v1’)

xlabel(’v1(t)’,’Fontsize’,fsize);
ylabel(’i(t)’,’Fontsize’,fsize);
figure
plot(ya(:,2),ya(:,1))
title(’Memristor Attractor: 2D Projection,
phi vs. v1’)

xlabel(’v1(t)’,’Fontsize’,fsize);
ylabel(’phi(t)’,’Fontsize’,fsize);
figure
plot(ya(:,3),ya(:,1))
title(’Memristor Attractor: 2D Projection,
phi vs. i’)

xlabel(’i(t)’,’Fontsize’,fsize);
ylabel(’phi(t)’,’Fontsize’,fsize);
figure
plot(t,ya(:,2))
hold
plot(t,ya(:,4),’r’)
title(’Memristor chaotic time series:
v1 (blue) and v2 (red)’)

figure
plot(t,ya(:,1))
hold
plot(t,ya(:,3),’r’)
title(’Memristor chaotic time series:
w (blue) and i (red)’)

%% 3d plot: flux, current and voltage
figure
plot3(ya(:,1),ya(:,2),ya(:,3));
grid on
xlabel(’w(t)’,’Fontsize’,fsize);
ylabel(’v1(t)’,’Fontsize’,fsize);
zlabel(’i(t)’,’Fontsize’,fsize);
title(’Memristor 3D attractor’);

Shown below is W.m:
%% Menductance functions for use with
%% memristorAudio.m and
%% memristorAudioSIMPLEST.m
%% Bharathwaj Muthusway,
%% Pracheta Kokate
%% July 17th 2008,
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%% June 2009
%% mbharat@cory.eecs.berkeley.edu

function r=W(y)
if y(1) <= -1.5e-4

r = 43.25e-4;
elseif y(1) > -1.5e-4 && y(1) <= -0.5e-4

r = -9.33*y(1)-9.67e-4;
elseif y(1) > -0.5e-4 && y(1) < 0.5e-4

r = -5.005e-4;
elseif y(1) >= 0.5e-4 && y(1) < 1.5e-4

r = 9.33*y(1)-9.67e-4;
else

r = 43.25e-4;
end

end

The circuit parameters above were chosen such that
the circuit frequencies are in the audio range. To listen
to sounds of chaos, use the MATLAB command:
soundsc(ya(:,1),44000)

APPENDIX D
MATLAB SIMULATION CODE FOR FOUR ELEMENT

MEMRISTOR BASED CHAOTIC CIRCUIT WITH SINGLE
NEGATIVE ELEMENT

The file below is called memristorAudioSIM-
PLEST.m, use the same W.m in the previous appendix.
%% Memristor based chaotic Chua’s circuit
%% simulation
%% Bharathwaj Muthusway, Pracheta Kokate
%% June 13th 2008 - July 3rd 2008
%% June 2009
%% mbharat@cory.eecs.berkeley.edu
%% Ref: Stephen Lynch,
%% Dynamical Systems with Applications
%% using MATLAB

clear;
%% MAKE SURE CODE BELOW IS ON A SINGLE LINE.
%% W(y) is the same function from the
%% previous appendix
dmemristor=inline(’[y(2);(y(3)-W(y)*y(2))/33e-9;
(y(2)-y(4))/(1*-10e-3);
y(3)*(1/100e-9)]’,’t’,’y’);

options = odeset(’RelTol’,1e-7,’AbsTol’,
1e-7);
[t,ya]=ode45(dmemristor,[0 100e-3],
[0,0.1,0,0],options);

plot(ya(:,2),ya(:,4))
title(’Memristor Attractor: 2D Projection,
v2 vs. v1’)
fsize=15;
xlabel(’v1(t)’,’Fontsize’,fsize);
ylabel(’v2(t)’,’Fontsize’,fsize);

figure
plot(ya(:,2),ya(:,3))
title(’Memristor Attractor: 2D Projection,
i vs. v1’)

xlabel(’v1(t)’,’Fontsize’,fsize);
ylabel(’i(t)’,’Fontsize’,fsize);

figure
plot(ya(:,2),ya(:,1))
title(’Memristor Attractor: 2D Projection,
phi vs. v1’)
xlabel(’v1(t)’,’Fontsize’,fsize);
ylabel(’phi(t)’,’Fontsize’,fsize);

figure
plot(ya(:,3),ya(:,1))
title(’Memristor Attractor: 2D Projection,
phi vs. i’)
xlabel(’i(t)’,’Fontsize’,fsize);
ylabel(’phi(t)’,’Fontsize’,fsize);

fsize=15;
xlabel(’v1(t)’,’Fontsize’,fsize);
ylabel(’v2(t)’,’Fontsize’,fsize);

figure
plot(t,ya(:,2))
hold
plot(t,ya(:,4),’r’)
title(’Memristor chaotic time series:
v1 (blue) and v2 (red)’)

figure
plot(t,ya(:,1))
hold
plot(t,ya(:,3),’r’)
title(’Memristor chaotic time series:
w (blue) and i (red)’)

%% 3d plot: flux, current and voltage
figure
plot3(ya(:,1),ya(:,2),ya(:,3));
grid on
xlabel(’w(t)’,’Fontsize’,fsize);
ylabel(’v1(t)’,’Fontsize’,fsize);
zlabel(’i(t)’,’Fontsize’,fsize);
title(’Memristor 3D attractor’);

APPENDIX E
LYAPUNOV EXPONENT PROGRAMS

The Lyapunov exponent program for the four-element
memristor-based chaotic circuit is shown below.
function OUT = fourElementMemristor(t,X)
%MEMRISTOR Model of memristor based four
%Element chaotic circuit

% Settings:
% ODEFUNCTION: fourElementMemristor
% Final Time: 1000, Step: 0.01,
% Relative & Absolute Tol: 1e-007
% No. of discarded transients: 100,
% update Lyapunov: 10
% Initial Conditions: 0 0.1 0 0,
% no. of linearized ODEs: 16

% The first 4 elements of the input data X
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% correspond to the
% 4 state variables. Restore them.
% The input data X is a 12-element vector
% in this case.
% Note: x is different from X
w = X(1); x = X(2);y = X(3);z = X(4);

%% MAKE SURE CODE IS ON A SINGLE LINE!
% Parameters.
L1 = 10e-3;C1=33e-9;C2=100e-9;k=8.33;

% ODE
dw = (sqrt(L1*C2))*x;
dx = (sqrt(L1*C2)/C1)*(y-fourElementW(w)*x);
% dy = (sqrt(L1*C2)/(k*L1))*(x-z);
% comment dy above and uncomment dy
% below for ONE negative element
% this single negative element chaotic
% circuit may be the simplest
% possible four dimensional and
% four-element chaotic circuit
% ALSO, YOU NEED TO CHANGE JACOBIAN!
k = 1;
dy = (sqrt(L1*C2)/(k*-L1))*(x-z);
% end uncomment code
dz = ((sqrt(L1*C2)*k)/C2)*y;

% Q is a 4 by 4 matrix, so it has 12
% elements.
% Since the input data is a column
% vector, rearrange the last 12
% elements of the input data in a
% square matrix.

Q = [X(5), X(9), X(13),X(17);
X(6), X(10), X(14),X(18);
X(7), X(11), X(15),X(19);
X(8), X(12), X(16),X(20)];

% Linearized system (Jacobian)
J = [ 0 sqrt(L1*C2) 0 0;

0 -(sqrt(L1*C2)/C1)*fourElementW(w)
sqrt(L1*C2)/C1 0
%0 (sqrt(L1*C2)/(k*L1))
% 0 -(sqrt(L1*C2)/(k*L1))
% replace row above with
% row below for one negative element
% memsristor circuit
0 -(sqrt(L1*C2)/(k*L1)) 0

(sqrt(L1*C2)/(k*L1))
0 0 ((sqrt(L1*C2)*k)/C2) 0];

% Multiply J by Q to form a variational
% equation
F = J*Q;

OUT = [dw;dx; dy; dz; F(:)];
end

The Lyapunov exponent program for the canonical
memristor-based chaotic circuit is shown below.
function OUT = fourDMemristorCanonical(t,X)
% Lyapunov exponent computation for
% Four-D Canonical Memristor

% Settings: ODEFUNCTION: fourdm
% Final Time: 10000, Step: 1,
% Relative & Absolute Tol: 1e-007
% No. of discarded transients: 100,
% update Lyapunov: 10
% Initial Conditions: 0 0 0 2e-5,
% no. of linearized ODEs: 16

% The first 4 elements of the input
% data X correspond to the
% 4 state variables. Restore them.
% The input data X is a 12-element
% vector in this case.
p = X(1); q = X(2);r = X(3);s = X(4);
% time scaling
tau = 1/sqrt(7.07e-3*49.5e-9);
% ODE
dp = (q*10e3)/tau;
dq = (1/(tau*5.5e-9))*(r/(2*1428)-q/1428
-canonicalW(p)*q);
dr = (1/(tau*49.5e-9))*((2*q)/1428-r/1428
-s/10);
ds = (10*r)/(tau*7.07e-3);

% Q is a 4 by 4 matrix, so it has
% 12 elements.
% Since the input data is a column
% vector, rearrange
% the last 12 elements of the input
% data in a square matrix.

Q = [X(5), X(9), X(13),X(17);
X(6), X(10), X(14),X(18);
X(7), X(11), X(15),X(19);
X(8), X(12), X(16),X(20)];

% Linearized system (Jacobian)
J = [ 0,10e3/tau,0,0;

0,-(1/(tau*5.5e-9))*(1/1428+
canonicalW(p)),
(1/(tau*5.5e-9))*(1/(2*1428)),0;
0,(1/(tau*49.5e-9))*(2/1428),
-(1/(tau*49.5e-9))*(1/1428),
-(1/(tau*49.5e-9))*(1/10);
0,0,10/(tau*7.07e-3),0];

% Multiply J by Q to form a variational
%equation
F = J*Q;

OUT = [dp; dq; dr; ds;F(:)];
end

For the Time-Series method, we use the same pro-
grams above, but the call functions are different and
are given below. First is the call function for the four-
element memristor-based chaotic circuits followed by the
call function for the canonical memristor-based chaotic
circuit.
options = odeset(’RelTol’,1e-7,’AbsTol’,1e-7);
[T,Res]=lyapunov(4,@fourElementMemristor,@ode45,
0,0.01,1000,[0 0.1 0 0],10);
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plot(T,Res);
title(’Dynamics of Lyapunov exponents’);
xlabel(’Time’); ylabel(’Lyapunov exponents’);
options = odeset(’RelTol’,1e-7,’AbsTol’,1e-7);
[T,Res]=lyapunov(4,@fourDMemristorCanonical,
@ode45,options,0,1,10000,[0 0 0 2e-5],1);
plot(T,Res);
title(’Dynamics of Lyapunov exponents’);
xlabel(’Time’); ylabel(’Lyapunov exponents’);
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