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Abstract—This work shows how one can obtain
Chua’s circuit with a cubic nonlinearity from the classic
Van der Pol oscillator. The approach helps in pro-
gressively advancing from the Hopf bifurcation phe-
nomenon in the Van der Pol oscillator to the period-
doubling bifurcations in Chua’s circuit. We also place
emphasis on mathematical simulation of the dynamic
system and physical circuit realization on a breadboard.
This systematic methodology has proved invaluable
in explaining the phenomenon of nonlinear dynamics
and chaos to the curious undergraduate. The student
is assumed to have a background in basic differential
equations (equilibrium points, stability, linearization)
and DC circuit theory. This paper is written with the
student in mind. A student should be able to use this
paper as a ”two week lab manual” in an undergraduate
course on nonlinear dynamcis and chaos.

I. Introduction

A challenge faced by most undergraduate students when
encountering nonlinear dynamics is the apparent discon-
nect between the different concepts. Also many of the
concepts in nonlinear dynamics seem to be too abstract
and mathematical. It is vital early in the study of nonlinear
dynamics that the student has a ”practical feel” for the
concepts along with the mathematical details.

This paper is being used as a two week lab in the
introductory nonlinear dynamics and chaos course at the
Milwaukee School of Engineering. Our school is on a
quarter system and the course is targeted towards second
year engineering students. Hence we do not cover topics
such as rigorous proofs of chaos via topological horseshoe
theory. Rather, the goal of the lab and this paper is that
the students grasp basic concepts related to bifurcation
phenomenon. In the first week, the student studies Hopf bi-
furcations. In the second week, the student studies period-
doubling bifurcations.

Thus in this paper, we explore a method by which we
naturally move from the Hopf bifurcation phenomenon
to period-doubling bifurcations. The approach we use
is to first study the Van der Pol oscillator [14]. This
oscillator is a Liénard system and displays a degenerate
Hopf bifurcation at the origin. This system can also be
simulated and realized physically. We realize the Van der
Pol oscillator by replacing the tunnel diode [14] with an

active cubic nonlinearity based on operational amplifiers
and analog multipliers. The purpose of doing so is that
this realization can be converted to Chua’s circuit with a
cubic nonlinearity [9] by simply adding a resistor and a
capacitor. We emphasize that the student first adds the
linear resistor and determines a resistance value needed
for chaos from the circuit equilibrium points. Next they
choose a capacitance value based on Shilkinov eigenvalue
conditions [3]. Once the student observes chaos they are
encouraged to study period-doubling bifurcations. Hence
the student moves from the very first electronic oscillator
to a circuit that is the paradigm of chaos. Although
the first offering of this course had only six students,
the response was all positive. A particular response was
”Through nonlinear dynamics, our basic circuit concepts
were further reinforced and also extended. For example,
we got to use analog multipliers and op-amps in positive
feedback (current inverters). We are not exposed to analog
multipliers, even positive feedback op-amp circuits are
limited to Schmitt Triggers.”

The organization of this paper naturally follows our two
week lab approach. We first derive circuit equations for the
Van der Pol oscillator. This is followed by a stability anal-
ysis to mathematically confirm the existence of the Hopf
bifurcation. Next we simulate the Van der Pol differential
equations. Note that one can use any simulation package,
in this paper we use MATLAB [11]. We ”close-the-loop”
by realizing the Van der Pol oscillator on a breadboard.
We follow suite with Chua’s circuit. The paper concludes
with a discussion of future work.

II. Van der Pol oscillator

A. Circuit Equations

The Van der Pol equation can be represented using the
circuit [5] shown in Fig. 1. We will now derive the circuit
equations and prove that they correspond to the classic
Van der Pol oscillator.

Using Kirchhoff’s current law [8] at vC1 in Fig. 1 gives
Eq.(1).

iL + iC1 + iR = 0 (1)
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Fig. 1: A circuit model of the Van der Pol oscillator.

Taking the time-derivative of Eq.(1) yields Eq.(2).

diL

dt
+

diC1

dt
+

diR

dt
= 0 (2)

Using element laws, passive sign convention and the chain
rule [8] , we rewrite Eq.(2) resulting in Eq.(3).

vC1

L1

+ C1

d2vC1

dt2
+

diR

dvC1

dvC1

dt
= 0 (3)

In Eq.(3), iR(vC1) is the driving-point characteristic of the
nonlinear resistorNR in Fig. 1. A classic implementation of
the Van der Pol oscillator uses a tunnel-diode in series with
a voltage source [14] to represent the nonlinear resistor.
That is we have an active cubic nonlinearity as shown in
Eq.(4).

iR(vC1) = avC1 + bv3C1
(4)

We will set a = −1, b = 1

3
since they are ”standard”

values for the Van der Pol oscillator [5]. However we will
design NR using the the model [9] in Fig. 2.
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Fig. 2: Circuit model of the nonlinear resistor for the Van
der Pol oscillator.

Using Kirchhoff’s voltage law [8] in Fig. 2 we have
Eq.(5).

iR(vC1) =

(

vC1 −
(vC1)

3

3

)

1

R
(5)

If R < 0, we get Eq.(6).

iR(vC1) =

(

−vC1 +
(vC1)

3

3

)

1

|R|
(6)

Physically implementing the nonlinear resistor can be
done using operational amplifiers and analog multipliers
[9] as shown in Fig. 3. Eq.(7) shows the final expression for
iR(vC1). The derivation is a good exercise for the student.
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Fig. 3: Circuit implementation of nonlinear resistor. All
power supplies are ±15 V . Op-amp U1 acts as a current
inverter when R1 = R2, U2 and U3 are analog multipliers.

iR(vC1) =

[

−vC1 +

(
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R5

R4

)

(vC1)
3

100

]

1

R3

(7)

Comparing Eq.(7) to Eq.(6), we see that:
(

1 +
R5

R4

)

1

100
=

1

3
, R3 = |R| = R (R > 0) (8)

We will choose R1 = R2 = 2.2 kΩ, R4 = 1.1 kΩ
and R5 = 36 kΩ. The strategy we employ is to first
pick R1, R2 according to [9]. Then we pick R4 close to
1 kΩ. We then solve for R5 by comparing Eq.(6) and
Eq.(7). Substituting Eq.(7) with these resistance values
into Eq.(3) and simplifying we get Eq.(9).

C1

d2vC1

dt2
+

(

−1 + v2C1

) 1

R

dvC1

dt
+

vC1

L1

= 0 (9)

Time-scaling Eq.(9) τ = t√
L1C1

and simplifying, we get

Eq.(10) where we have used the dot notation to indicate
derivative with respect to τ .

v̈C1 − ǫ
(

1− v2C1

)

v̇C1 + vC1 = 0 (10)



In Eq.(10), ǫ =
√

L1

C1

1

R
. We want to emphasize that

Eq.(10) is not dimensionless. We have simply time-scaled
the equation to obtain the same form as the Van der Pol
oscillator. In other words, the current is in milliamperes
and the voltage will be on the order of volts. We do not
require the dimensionless version because our goal is to
synthesize Chua’s circuit from Fig. 1, as we will demon-
strate later in the paper. But first, we will mathematically
confirm the existence of a Hopf bifurcation in the Van der
Pol oscillator.

B. Stability Analysis

Using x = vC1, y = v̇C1 we obtain Eq.(11), the classic
state-space form of the Van der Pol oscillator.

ẋ = y

ẏ = ǫ · y(1− x2)− x (11)

In order to determine the Hopf bifurcation in the Van
der Pol oscillator, we first compute the fixed points of
Eq.(11).

0 = y∗

0 = ǫ · y∗(1− (x∗)2)− x∗ (12)

Hence the fixed points of the system are (x∗, y∗) = (0, 0).
Evaluating the Jacobian of Eq.(11) at the equilibrium
points we get Eq.(13).

J =

(

0 1
−1 ǫ

)

(13)

The eigenvalues of the matrix in Eq.(13) are purely
imaginary when ǫ = 0. If ǫ > 0, then we have complex
conjugate eigenvalues with positive real parts. If ǫ < 0,
then we have complex conjugate eigenvalues with nega-
tive real parts. In other words, by definition [6], a Hopf
bifurcation occurs at ǫ = 0.

Now that we have confirmed the existence of a Hopf
bifurcation, we will reproduce the Hopf bifurcation via
mathematical simulations and a physical circuit realiza-
tion. We will first finish choosing parameters for the Van
der Pol oscillator. We first fix L1 = 18 mH and C1 =
6.8 nF . Note that these are robust parameter values for
producing chaos in Chua’s circuit from [9]. If we use
ǫ = 1.02, we determine R = 1.6 kΩ. The justification
for choosing an ǫ closer to 1 is that a very large value of
ǫ implies a very strong nonlinearity in Eq.(10). This may
lead to a large amplitude limit cycle in Chua’s circuit. A
similar argument applies to a very small value of ǫ. We
educate the student on these subtle concepts once they
finish exploring Chua’s circuit.

C. Results from System Simulation and Physical Realiza-

tion

Fig 4 show our phase-portrait results from simulations
and physical realization. We imported all data into MAT-
LAB for ease of plotting.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

vC1(τ) (volts)

v̇
C

2
(τ

)
(v

o
lt
s/

ta
u
)

Fig. 4: A superimposed phase plot of results from MAT-
LAB simulation (blue) and physical circuit realization
(red). Note the y-axis time scale is dimensionless. ode45
integration routine was used in MATLAB with relative
and absolute tolerances of 1 · 10−7. Initial conditions are
(0.1,0). In order to experimentally measure v̇C1, we used
a current probe to measure iC1 and scaled using C1. We
then imported the data into MATLAB and time-scaled to
τ . You may also need to compensate for probe impedance.

III. Chua’s Circuit

The students are now asked to obtain chaos from Fig. 1
by adding a resistor and a capacitor. These two elements
provide the third state necessary for a continuous time
autonomous dynamical system to become chaotic [3].

A. The Circuit Model

The result of inserting resistor R and capacitor C2 are
shown in Fig. 5.
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Fig. 5: Circuit model for Chua’s circuit. The only elements
added to the Van der Pol oscillator are highlighted.

The differential equations in Eq.(14) describe Chua’s



circuit in Fig. 5.

dvC1

dt
=

1

C1

(

vC2 − vC1

R
− iR(vC1)

)

dvC2

dt
=

1

C2

(

vC1 − vC2

R
+ iL1

)

(14)

diL1

dt
= −

vC2

L1

B. Stability Analysis

First we compute the equilibrium points (v∗
C1

, v∗
C2

, i∗
L1
)

in Eq.(14) as shown in Eq.(15).

0 =
1

C1

(

v∗
C2

− v∗
C1

R
− iR(v

∗
C1

)

)

0 =
1

C2

(

v∗
C1

− v∗
C2

R
+ i∗L1

)

(15)

0 = −
v∗
C2

L1

Hence one of the equilibrium points is the ori-
gin. Resistance R is chosen such that the other two
equilibrium points lie in the negative resistance re-
gion of the nonlinear resistor NR [3]. A choice of
R = 1.9 kΩ gives rise to the equilibrium points
(−0.68 V, 0,−0.36 mA), (0.68 V, 0, 0.36 mA).

Next we compute the Jacobian of Eq.(14) at the three
equilibrium points and impose the first Shilnikov condition
[3]. This will lead to a multitude of capacitance values. We
picked C2 = 68 nF , very close to the value of 70 nF from
[9].

C. Results from System Simulation and Physical Realiza-

tion

Fig 6 shows our phase-portrait results from simulations
and physical realization.

IV. Conclusions and Future Work

In this paper we have shown how to systematically move
from the Hopf bifurcation in the Van der Pol oscillator
to the period-doubling bifurcations in Chua’s circuit. The
central concept is that a Van der Pol oscillator can use
the same cubic nonlinearity as Chua’s circuit. Only two
parameters need to be tuned when deriving Chua’s circuit
from our Van der Pol oscillator realization.

As a natural followup, a student wonders about a rigor-
ous proof of chaos in Chua’s circuit. Note that we only
imposed the first Shilnikov condition. A rigorous proof
would require confirming the existence of a homoclinic
orbit [3]. Since we have a smooth nonlinear function,
the instructor is encouraged to pursue the method of
undetermined coefficients [10] to find the homoclinic orbit.
Another approach would be for the instructor to start a
rigorous analysis of chaos via the bifurcation methodolo-
gies presented in [7]. One could also discuss minimizing
the number of elements required for chaos [1] in Fig. 5.
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Fig. 6: A superimposed phase plot of results from MAT-
LAB simulation (blue) and physical circuit realization
(red). MATLAB initial conditions are (0,0.1,0). ode45 with
the same settings from the Van der Pol oscillator were
used. Data was sampled using NI-myDAQ [12]. Both x

and y data from the oscilloscope were scaled by a factor of
2 to match MATLAB axis scales. We were unable to avoid
aliasing in the physical circuit realization (red) data.
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