
 

                                 

Abstract- This work presents a comparative study of two new 

chaotic systems obtained from a LCM 

(inductor-capacitor-memristor) chaotic circuit.  We use a fourth 

order polynomial and piecewise linear nonlinearities for the 

memristance functions.  These systems have only one equilibrium 

point and use only three fundamental circuit elements, nevertheless, 

they still generate 2-scroll and 4-scroll attractors.  Chaotic behavior 

is illustrated using phase portraits, bifurcation diagrams and 

Lyapunov exponent spectra, revealing several chaotic attractors 

and notably similar dynamical behavior in both systems. 

I. INTRODUCTION 

The successful fabrication of a memristor in the form of a passive 

semiconductor device by HP Labs in 2008 [1] has resulted in a 

significant increase in research into memristors [2] and 

memristive systems [3]. There currently exists a large body of 

work examining chaotic behaviour in memristor based circuits, 

the vast majority of which pertains to systems based on modified 

Chua’s circuits. In 2010, a simpler memristor based circuit 

comprising of only three elements – a linear passive inductor, a 

linear passive capacitor and a non-linear active memristor – was 

shown to be capable of generating a chaotic attractor [4]. 

This paper presents a comparative study of chaotic behaviour in 

two new systems based on this three element memristor circuit. 

The first system is characterized by a continuous fourth order 

polynomial memristance function. We construct a four segment 

piecewise-linear approximation of this polynomial function [5] 

and use it to define the memristance function of the second 

system. The objective of this study is to confirm the existence of 

chaos and identify the degree of similarity between the dynamical 

behaviour in these two systems. These two systems have only one 

equilibrium point but they still generate multi-scroll attractors.  

Hence these circuits are more in spirit of general jerk circuits [6] 

that have a single equilibrium than systems such as Chua's circuit 

that can generate multiscroll attractors but have multiple 

equilibrium points [7]. 

In this work, we present evidence of chaos by way of phase 

portraits, bifurcation diagrams and Lyapunov exponent 

spectrums. Our results demonstrate that both systems exhibit 

similar dynamical behaviour over a range of a given control 

parameter. This finding will be of potential interest in future 

studies aimed at constructing physical implementations of 

memristor emulators capable of generating more complex 

chaotic behaviour. 

II. DYNAMICAL EQUATIONS 

The autonomous, three element memristor based circuit 

presented in [4] consists of a linear passive inductor, linear 

passive capacitor and a non-linear active memristor in series as 

shown in Figure 1. 

 
Figure 1 Three element memristor based circuit [4]. 

We define the state variables for the circuit as 
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where )(tvC  denotes the voltage across the terminals of 

capacitor C , )(tiL  denotes the current flowing through inductor 

L , and )(tz  denotes the internal state variable of the memristor. 

The first state equation represents the current-voltage relation of 

the capacitor 
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By applying Kirchhoff’s voltage law around the loop we obtain 

the second state equation 
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where ))(( tzR  is the memristance function of M . 

We define the internal state of the memristor, the final state 

equation, to be 

zizi
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We chose this particular form of the internal state function based 

on the state function from [4].  Correspondingly, we also chose 

the memristance functions (described shortly) as generalizations 

of the memristance function from [4].  The memristance in [4] 

had only one minima, our memristance function has two minima 

and one maxima.  The intuitive justification for this choice is 
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increased complexity of the attractor. Using (2) – (4) we can 

write the set of state equations for the circuit as 
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Two systems, System 1 and System 2, are defined based on (5) 

via the selection of new memristance functions. The memristance 

functions for each system, 1R  and 2R  respectively, are shown in 

Figure 2. Memristance function 1R  is a fourth order polynomial 

defined as 
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Memristance function 2R is a four segment piecewise-linear 

approximation of 1R  defined as 
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where a , b ,   and  are selected such that 21 RR   at the 

turning points and roots of each function, for some value of the 

common control parameter  . In this study the memristance 

functions have been matched for 5.121   . It should be 

noted that System 2 will become a less accurate approximation of 

System 1 as   deviates from the value at which the two 

functions were matched. 

  
Figure 2 Memristance functions R1 (blue) and R2 (red) for the parameters listed 

in Table 1 and Table 2 with β=1.5. 

III. LINEAR STABILITY ANALYSIS 

By setting the left hand side of (5) to zero we can calculate the 

equilibrium points of the system. By inspection 

)0,0,0(),,( 000

0  zivP LC                 (8) 

is an equilibrium set for this system. For both systems, it can be 

shown that the Jacobian at the equilibrium point is given by 
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The characteristic polynomial of equation (9) is 
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which has roots at 
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From (11) it can be seen that there will always be at least one 

unstable root for 0 , thereby yielding the possibility of 

chaotic behaviour. 

Table 1 Simulation Parameters for System 1. 

Simulation parameters Values 

Inductance  L 3H 

Capacitance  C 1F 

α 0.9 

β1 Control parameter 

 

Table 2 Simulation Parameters for System 2. 

Simulation parameters Values 

Inductance  L 3H 

Capacitance  C 1F 

α 0.9 

β2 Control parameter 

σ 5.5751 

γ 1.2247 

δa 3.6336 

δb -0.9186 

III. SIMULATION RESULTS 

System 1 and System 2 have been simulated using the 

parameters presented in Table 1 and Table 2 respectively. By 

setting control parameter 21  for System 1 and 25.12  for 

System 2 we generate the phase portraits shown in Figures 3a and 

3b respectively. Both trajectories form two-lobe chaotic 

attractors of similar shape and dimensions. Increasing the control 

parameters such that 4.21   and 39.12   yields similar 

stable limit cycles in each system, as shown in Figures 4a and 4b. 

Setting 31  and 22   results in the generation of four-lobe 

chaotic attractors as shown in Figures 5a and 5b. 

  By sampling values of )(tvC  where 0)()(  tztiL  for 

  4,0 21    we generate the bifurcation diagrams, as shown 

in Figures 6a and 6b. These diagrams show similar dynamical 

behaviour and bifurcation patterns in both systems. For System 1 

(System 2) the first densely populated chaotic region in Figure 6a 

(6b) corresponds to the two lobe attractor which and spans  

15.20 1    ( 35.10 2   ). This is followed by a window of 

periodic behaviour characterized by the limit cycle shown in 

Figure 4a (Figure 4b). The second densely populated region of 

Figure 6a (6b) corresponds to the four lobe attractor and spans 

35.355.2 1   ( 38.244.1 2   ). A third chaotic region can 



 

be seen following a second window of periodic behaviour, 

however no significant change was observed in the trajectory of 

the attractor corresponding to this region as compared with 

Figures 5a and 5b. 

 

  

Figure 3 Phase portraits for System 1 β1=2 (Figure 3a) and System 2 β2=1.25 

(Figure 3b). 

 Figure 4 Phase portraits for System 1 β1=2.4 (Figure 4a) and System 2 β2=1.39 

(Figure 4b). 

 Figure 5 Phase portraits for System 1 β1=3 (Figure 5a) and System 2 β2=2 

(Figure 5b). 

 Figures 7a and 7b show bifurcation diagrams for control 

parameter  from equation (4) over the range 20   

where 5.121   . These figures show multiple chaotic 

regions and discontinuities. As  decreases over the 

approximate range 12   in Figure 7a, we can see a 

reoccurring pattern whereby the system, starting as a stable limit 

cycle, transitions through a period doubling route to chaos 

followed by another bifurcation into another stable limit cycle (or 

sometimes chaos) with a smaller trajectory. A similar bifurcation 

pattern, albeit more discontinuous, can be observed for 12   

in Figure 7b. Dense chaotic regions interspersed with short 

windows of periodic behaviour are present in both Figures 7a and 

7b for the approximate range 13.0  . 

 
Figure 6a Bifurcation diagram of System 1 for vc(t) against β1. 

  
Figure 6b Bifurcation diagram of System 2 for vc (t) against β2. 

 
Figure 7a Bifurcation diagram of System 1 for vc(t) against α. 

 
Figure 7b Bifurcation diagram of System 2 for vc(t) against α. 
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The spectrum of Lyapunov exponents can provide empirical 

evidence of chaos [8]. For the three dimensional system in (5) we 

have exponents 
321 ,,  where

321   . If a system 

produces a stable limit cycle, the resulting Lyapunov spectrum 

will meet the conditions 

01   and 0, 32  ,                   (12) 

whereas a chaotic system will result in 

01  , 02  , and 03  .               (13) 

We calculate the Lyapunov exponents numerically using both 

the time series method [9] and the QR method [10]. Results 

corresponding to the phase portraits of Figures 3-5 are listed in 

Table 3. Due to numerical error in the calculation process we can 

consider 01.0i to be equivalent to 0i .  As expected, the 

systems simulated for Figures 3a, 3b, 5a and 5b meet condition 

(13) thereby empirically confirming chaos, while Figures 4a and 

4b meet condition (12). 

Figures 8a and 8b are plots of 321 ,,.   for Systems 1 and 2 

respectively over the range   4,0 21   . The results illustrate 

the transition between stable and chaotic behaviour arising from 

variations in the control variable. Furthermore, the regions 

corresponding to chaos and stability in these figures align well 

with those of the bifurcation diagrams shown in Figures 6a and 

6b. 

 

 
Figure 8a Lyapunov exponent spectrum for System 1 against β1. 

 
Figure 8b Lyapunov exponent spectrum for System 2 against β2. 

 

 

 

 

Table 3 Lyapunov Exponents. 

Figure 
Simulation 

parameter 

Lyapunov exponents = },,{ 321   

Time Series QR 

3a 21   {0.076, 0.003, -0.306} {0.112, 0.000, -0.334} 

3b 25.12   {0.086, -0.003, -0.288} {0.068, 0.001, -0.264} 

4a 4.21   {0.005, -0.105, -0.219} {0.001, -0.106, -0.215} 

4b 39.12   {0.002, -0.011, -0.100} {0.004, -0.011, -0.101} 

5a 31   {0.106,  0.003, -0.312} {0.098, -0.004, -0.300} 

5b 22   {0.089, 0.008, -0.197} {0.088, 0.002, -0.188} 

V. CONCLUSION 

In this paper, we have studied and compared chaotic behaviour 

in two new systems built from a three element, autonomous 

memristor based circuit. The existence of several chaotic 

attractors and stable limit cycles within each system has been 

demonstrated by way of phase portraits and bifurcation 

diagrams. Empirical evidence of chaos has been presented in the 

form of Lyapunov exponent spectrums. 

The results have shown that the first system, characterized by a 

continuous fourth order polynomial memristance function, 

exhibits similar chaotic behaviour to the second system, whose 

memristance function is a piecewise-linear approximation of the 

former. This constitutes a significant finding in that it should be 

possible to physically implement memristor emulator circuits 

capable of generating complex chaotic behaviour without the 

need for resource intensive FPGAs or microcontrollers to model 

high order non-linearity. Memristor emulators characterized by 

piecewise-linear non-linearity could potentially be designed and 

constructed using standard discrete elements. 

Currently, we are working on physically emulating the 

memristor.  It would also be interesting to check if n-scroll 

attractors can be generated from this circuit by an appropriate 

choice of internal state and memristance functions. 
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