
EECS150 Fall 2004 Lab5

UCB 1 2004

UNIVERSITY OF CALIFORNIA AT BERKELEY

COLLEGE OF ENGINEERING

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Lab 5

Network Audio

1.0 Motivation
In order to better acquaint you with a more refined design process, as well as

provide an interesting and yet simple lab, this week you will be designing a circuit to

decode Ethernet frames containing PCM audio data.

The cornerstones of the EECS150 class are registers and gates, which can be built

into incredibly powerful structures like counters, shift-registers and the like. However all

too often the temptation is to use a more general Finite State Machine construction where

a simpler more regular component like a counter could do a better job with fewer bugs

and less code.

2.0 Introduction
As described in section 1.0 Motivation above, the primary goal of this lab is to

parse Ethernet packets, filtering them based on address and type information and then

send the PCM audio data payload on to be played without using a general FSM. The

idea in this lab is to acquaint you with more powerful design techniques which will not

only save you design and coding time, but will avoid many bugs, while simultaneously

making your circuits smaller, easier to understand and more efficient in terms of power

and space.

Part of the point of this lab is also to expose you to the kind of interesting circuits

you can build in this class, and the kind of circuits you will build for your project. To

make this interesting, we have set up a computer in the lab which will be broadcasting

music. The audio stream is being broadcast directly from a PC running Microsoft®

WindowsXP® and Nullsoft’s® Winamp5® with a custom made output plugin which

takes PCM audio data as decoded from MP3 files and sends it out in raw Ethernet

packets.

DURING THIS LAB YOU MAY NOT USE FINITE STATE MACHINES OR BEHAVIORAL

VERILOG. YOU MUST USE ASSIGNS STATEMENTS FOR ALL COMBINATIONAL LOGIC AND THE

COUNTER.V OR REGISTER.V MODULES FOR ALL SEQUENTIAL ELEMENTS.

2.1 Networking Basics
Across the world most LANs (Local Area Networks) are currently built on the

100BaseTX Ethenet standard, because it uses inexpensive cable, the hardware is cheap

(and backward compatible) and it is both fast and reliable over relatively long distances

(250m).

EECS150 Fall 2004 Lab5

UCB 2 2004

 Ethernet is a packet switched network as opposed to a circuit switched

network like the telephone system. This means that unlike a phone call, which

establishes some kind of connection between you and the person you call, Ethernet

simply takes a bunch of short messages, or packets and shuffles them around. Normally

this has all kinds of implications, like the fact that packets can be lost, corrupted and can

even arrive out of order. However for this checkpoint we wont worry about these

problems, since they are unlikely to be noticeable on our small controlled network.

2.2 Network Organization
Figure 1 below is a simple diagram of the test network set up in 125 Cory for this

lab. Notice that the green (0) network is fully connected to all boards and will carry the

broadcast audio stream which you will be receiving.

Note that part of your debugging process should be to make sure that you are

using the correct network and that all the right cables are connected. There is a green

LED near each RJ45 network jack will be appear lit when the network port is

connected. The amber LED will blink or turn on when there is network traffic on that

port. These LEDs are an invaluable and simple way to debug basic connection problems.

Audio

Stream

GREEN (0)

TA

Station

CaLinx2 CaLinx2 CaLinx2 CaLinx2 CaLinx2 CaLinx2 CaLinx2

Figure 1: Network Organization for Lab #5

2.3 Network Protocol Layers
Remember in 2.1 Networking Basics how we said that Ethernet was packet

switched and that it might do things like reorder and lose packets? Well most

applications can’t tolerate that. Imagine if your e-mail just sometimes got broken up or

reordered.

To prevent problems like that CS majors build protocol stacks such as the one

shown in figure 2. In this model, Ethernet would be the physical layer upon which a

data link layer depends. TCP/IP which adds a lot of features (like protection against

missing or reordered packets) would be layers 3 and 4 the network and transport

layers. In essence each layer depends upon, and expands the capabilities of the layer

below it.

EECS150 Fall 2004 Lab5

UCB 3 2004

Application

Presentation

Session

Transport

Network

Data Link

Physical

Computer A

Application

Presentation

Session

Transport

Network

Data Link

Physical

Computer B

ISO/OSI Standard 7 Layer Model

Real Connection

Virtual Connections

Figure 2: ISO/OSI Standard Protocol Layers

Looking at figure 2 you can see it might be a little much to have to build for just

one lab. So instead we’re going to use a much simpler model, as shown in figure 2

below. In this model we have a Windows PC running Winamp5 connected to an

LXT975 Ethernet Phy chip directly or through a network switch.

Audio (Winamp)

Data Link

Physical

Audio Stream

Audio

MAC (FPGA)

Phy (LXT975)

CaLinx2 Board

Lab5 Simplified Model

Real Connections

Virtual Connections

GREEN (0)

Network Switch (MAC/Phy Built In)

Figure 3: Simplified Lab5 Protocol Layers

You will also build the Audio layer, which isn’t really a normal networking layer.

This is just our version of the application layer from figure 2. Our application is

sending audio over Ethernet, so at the top of our protocol stack we have an audio layer

circuit which will decode and filter the incoming packets into a 32bit FIFO. The

audio layer doesn’t have to know or care about the MAC and Phy layer magic taking

place behind the scenes. That’s the whole point of protocol layers, you can build the

simple audio layer without knowing anything about the circuits we’re providing.

EECS150 Fall 2004 Lab5

UCB 4 2004

2.4 Ethernet Packets

Destination [47:16]

32bits

Destination [15:0] Source [47:32]

Source [31:0]

Ethernet Type [15:0] Reserved [15:0]

PCM Audio Data Sample 0 [31:0]

PCM Audio Data Sample 1023 [31:0]

1
0

2
8

w
o

rd
s

0xFFFFFFFF

32bits

0xFFFF 0x0090

0xc2001c50

0x0101 0x????

PCM Audio Data Sample 0 [31:0]

PCM Audio Data Sample 1023 [31:0]

Ethernet Packet Format Broadcast Audio Packet

1
0

2
4

w
o

rd
s

CRC [31:0]

Figure 4: Ethernet Packet Formats

Figure 4 above shows the basic format of the Ethernet packets you will be

working with. Aside from 1024x 32bit words of PCM Audio Data each packet must

have a header and, if it is to go through the network switches a CRC, which you will

need to remove from the packet.

In order to get the packets to their proper destination and so that the destination

knows the packet is meant for it each packet starts with a destination address field.

(Think carefully about why the destination should be first) After that is a similar source

address field identifying the sender of the packet. The final 16bits of the actual Ethernet

header consists of an Ethernet Type field indicating what the data in the body of the

packet is, so that different upper layer protocols can share a piece of Ethernet without

interfering with each other. Because our PCM Data is 32bits wide we insert a 16bit

padding field marked reserved. After that are the 1024x 32bit words of PCM Audio

Data, bringing the total packet length to 1028x 32bit words.

The right hand side of figure 4 above shows the specific values you should filter

packets with. Basically any packet which matches the values (minus the source

field) shown in that diagram should have its 1024x 32bit words of audio put into your

asynchronous FIFO. Do not worry what the source bits are for this lab.

3.0 Prelab
Please make sure to complete the prelab before you attend your lab section. You

will not be able to finish this lab in 3hrs otherwise!
1. Read this handout thoroughly. Pay particular attention to section 4.0

Lab Procedure as it describes what you will be doing in detail.

a. Make sure you understand how the fifo_async32 module works

2. Examine the Verilog provided for this weeks lab.

a. You should become intimately familiar with the Lab5Testbench.v

file as you will need to debug with it.

b. Watch the ChipScope tutorial, examine the example verilog
i. http://www-

inst.eecs.berkeley.edu/~cs150/fa04/Documents.htm#Tutorials

http://www-inst.eecs.berkeley.edu/~cs150/fa04/Documents.htm#Tutorials
http://www-inst.eecs.berkeley.edu/~cs150/fa04/Documents.htm#Tutorials

EECS150 Fall 2004 Lab5

UCB 5 2004

c. You should understand how to use the fifo_async32.v module,

though you do not need to understand how it works.

3. Write your Verilog ahead of time.

a. Eth2Audio.v will be a relatively simple module, you can build it

from fifo_async32.v, Counter.v and Register.v but you should

build it ahead of time.

4. You will need the entire 3hr lab!

a. You will need to test and debug both your verilog and ours.

b. You will be asked to use the ChipScope for the first time.

i. Its easy to use, but you will need to play with it to learn it

4.0 Lab Procedure
Remember to manage your Verilog, projects and folders well. Doing a poor

job of managing your files can cost you hours of rewriting code, if you accidentally

delete your files.

DURING THIS LAB YOU MAY NOT USE FINITE STATE MACHINES OR BEHAVIORAL

VERILOG. YOU MUST USE ASSIGNS STATEMENTS FOR ALL COMBINATIONAL LOGIC AND THE

COUNTER.V OR REGISTER.V MODULES FOR ALL SEQUENTIAL ELEMENTS.

Below are sections describing the various modules you may work with for this

lab. Note that you will need at least one instance of each of these modules.

4.1 ChipScope

For this part of the lab, you will need to use Chipscope to ensure the functionality

of your Eth2Audio.v works properly. Chipscope is an invaluable tool in helping to debug

problems that occur on the board. You will need to look at the wires going into and out

of your fifo to ensure that the values are being sent at the right time to the asynchronous

fifo. It will be helpful to trigger on specific wires such as when you are reading or writing

data to your fifo in order to determine what values are being written to them in chipscope.

4.1.1 Working with ChipScope

ChipScope is an embedded, software based logic analyzer. By inserting an

“integrated controller core” (icon) and an “integrated logic analyzer” (ila) into your

design and connecting them properly, you can monitor any or all of the signals in your

design. ChipScope provides you with a convenient software based interface for

controlling the “integrated logic analyzer,” including setting the triggering options and

viewing the waveforms.

There are six main steps to using ChipScope, as detailed below.

1. Generate an “integrated controller core” or icon

2. Generate one or maybe more “integrated logic analyzers” or ilas

3. Connect the ilas to the icon and make all of these modules part of your

design.

EECS150 Fall 2004 Lab5

UCB 6 2004

4. Synthesize, and implement your design (including the icon and ila) as

normal.

5. Program the CaLinx board

6. Run the ChipScope software to access and use the ilas (the ChipScope

software requires the icon to gain access to the ilas)

For a more detailed ChipScope tutorial, please refer to the documents page of the

website (http://www-inst.eecs.berkeley.edu/~cs150/sp06/Documents.php#Tutorials)

where you will find a ChipScope tutorial document.

4.2 Register.v
This is most likely the simplest module you will ever work with. The primary

reason to make this a separate module, is to save some time and allow us to write cleaner

verilog that is easier to read.

Signal Width Dir Description

Clock 1 I The Clock signal

Reset 1 I Reset the register to all 1’b0s

Set 1 I Set the register to all 1’b1s

Enable 1 I Enable the register to load a new value from In

In width I New value to load when Enable is high

Out width O Output value held in the register

Table 1: Port Specification for Register.v

In order to make this module more useful, it can vary in width using a Verilog

parameter: a constant which is known during synthesis, much like a preprocessor

define in C/C++ or a static member in Java. Below is an example instantiation of

an 32-bit register.

1.Register WordReg(.Clock(Clock),

2. .Reset(Reset),

3. .Set(1'b0),

4. .Enable(NextWordValid),

5. .In(NextWord),

6. .Out(Word));

7.defparam WordReg.width = 11;

Notice on line 7 where we set the width of the register. This statement,

called a “defparam” says that the simulation and synthesis tools should set the

parameter called “width” on the module instantiation called “WordReg” to “32”.

Notice that 32 could be any expression which evaluates to a synthesis time constant.

http://www-inst.eecs.berkeley.edu/~cs150/sp06/Documents.php#Tutorials

EECS150 Fall 2004 Lab5

UCB 7 2004

4.3 Counter.v
This is the second simplest module you will ever work with, its only slightly more

complicated than Register.v, it is a counter. This module represents a complete up-

counter with synchronous load which will roll over when it reaches its upper limit.

Signal Width Dir Description

Clock 1 I The Clock signal

Reset 1 I Reset the register to all 1’b0s

Set 1 I Set the register to all 1’b1s

Load 1 I Load the value on the In input into the counter

Enable 1 I Enable the counter to increment by one

In width I New value to load when Load is high

Count width O Output value held in the counter

Table 2: Port Specification for Counter.v

Like the register.v module in section 4.2 Register.v the counter module has a

width parameter which can be used to create a counter with any bit-width desired.

4.4 fifo_async32.v
In order to cross from the EthernetClock domain to the AudioClock

domain, you will need a special circuit designed to work with the two clocks not

running at the same rate, and are therefore not related in any way.

The module you will have is called an asynchronous FIFO. It is a simple, two

interface module, you write into one and read from the other. The way this module

assists is that the read and write interfaces can have separate clock signals. Thus in

this assignment you will write to the FIFO using the EthernetClock and read from

it using the AudioClock.

MAKE SURE YOU DO NOT USE SIGNALS FROM THE WRONG CLOCK DOMAIN, TRYING

TO USE AN RD_* SIGNAL IN THE ETHERETCLOCK DOMAIN OR VICE VERSA WILL CAUSE

YOUR CIRCUIT TO FAIL RANDOMLY ON THE CALINX2 BOARD.

Signal Width Dir Clock Description

din 32 I wr Data input bus

wr_en 1 I wr Write the value on din into the FIFO on the clock

wr_clk 1 I wr The write clock signal (EthernetClock)

rd_en 1 I rd Read enable, dout will be valid after the clock

rd_clk 1 I rd The read clock signal (AudioClock)

ainit 1 I none Asynchronous reset, will empty the FIFO

dout 32 O rd Data output bus, valid next cycle after rd_en

full 1 O wr Indicates that the FIFO is currently full

empty 1 O rd Indicates that the FIFO is currently empty

wr_count 10 O wr Indicates how many words are in the FIFO

rd_count 10 O rd Indicates how many words are in the FIFO

rd_ack 1 O rd Asserted for one the cycle when dout is valid,

right after rd_en has been signalled

EECS150 Fall 2004 Lab5

UCB 8 2004

Table 3: Port Specification for fifo_async32.v

Figure 5: fifo_async32 Block Symbol

Your job with Eth2Audio is to put valid audio data into the asynchronous fifo

whenever possible and to read it out when needed. The biggest challenge will be to

generate the handshaking signals needed to support the I/O spec for Eth2Audio,

not to mention gating wr_en based on where in the packet we currently are and whether

it is a good packet.

4.5 Eth2Audio.v
This module is the one you will have to write for this lab. This module, like the

fifo_async32 module, has two separate interfaces: one for incoming packets and one for

outgoing audio data. Both of these interfaces use simple 32-bit data busses and a

request/valid signaling protocol. Table 4 below shows the I/O specification and figure 6

shows the block symbol for this module.

Signal Width Dir Description
DIn 32 I Packet data input bus

InValid 1 I Indicates that DIn is valid on this cycle

InPacketValid 1 I Indicates the end of a packet with a valid CRC

InPacketInvalid 1 I Indicates the end of a packet with an invalid CRC

EthernetClock 1 I 25MHz Ethernet Clock

EthernetReset 1 I EthernetClock synchronous reset

AudioClock 1 I 12.288MHz Audio Clock

AudioReset 1 I AudioClock synchronous reset

DOut 32 O Audio data output bus

OutRequest 1 I Request for a new audio word output

OutValid 1 O Indicates that DOut is currently valid

Table 4: Port Specification for Eth2Audio.v

EECS150 Fall 2004 Lab5

UCB 9 2004

Eth2Audio

InValid
DIn

InPacketValid
InPacketInvalid

EthernetClock
EthernetReset

AudioClock
AudioReset

OutRequest
DOut
OutValid

Figure 6: Eth2Audio Block Symbol

This module should accept a new 32-bit word at most one per cycle when

InValid is 1’b1. If it is a word in the header of a packet, judging by the word

counter, then you should set or clear a register indicating whether the packet is valid

or not. Once the header is finished the next 0 to 1024 words should be written into the

async_fifo32, but only if the header was valid. After 1024 words of audio data, you

should throw out the remainder of the packet. When the packet is finished, the

filtering circuit should reset to its initial state, but the FIFO should not.

On the output side, you will need to design a simple circuit to create the

OutValid signal based on the OutRequest signal and the state of the rd_*

interface to the FIFO. Note that within the Request/Valid signaling protocol, DOut and

OutValid cannot ever change except on a rising edge when OutRequest is

1’b1, which may happen on every cycle or may happen very rarely. OutValid

should be 1’b1 when DOut is valid. Note that the dout output from the fifo_async32

module will not change ever except on the rising edge of a clock cycle when rd_en

is 1’b1.

EECS150 Fall 2004 Lab5

UCB 10 2004

5.0 Lab5 Checkoff

Name: ____________________________ Name: ____________________________

Section: ___________________________

I Audio on Board __________ (35%)

II Clean, FSM free Verilog __________ (35%)

III ChipScope view of Eth2Audio and ability to Trigger __________ (30%)

IV Total: __________

V TA: __________

VI Hours Spent: __________

RevA – 9/13/2004 Greg Gibeling Created a new lab

Based on the old Spring 2004 Checkpoint3

